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ABSTRACT

We review the papers devoted to solution of redansbn tomographic prob-
lems by using neural networks. Recent developmiantke solution of linear
and non-linear tomographic problems in various $ypetomography are sur-
veyed.
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INTRODUCTION

In the past few decades the problem of the tomdgecaeconstruction of im-
ages and physical fields (objects from hereonyibigion functions has become
vital due to fast evolution of computers which altocreation and application of
methods to processing information from measuringags [1].

Existing measuring systems vary in the kinds obinfation carriers and com-
ponents depending on type and size fed of objeddgrustudy. The methods of
information gathering by the measuring systemsamsiibsequent processing of
this information depend on the imposed requiremamtéie reconstructing to-
mography approaches.

Basically, both parallel and serial data gathetieachniques may be imple-
mented. The first techniqgue enables us to gathge ldata arrays within one
step. But this method has a very complex implememtarchitecture. The evi-
dent advantage of the second approach is its ingi&ation architecture sim-
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plicity while its data processing rate that hasgmificant effect on the recon-
struction of the greatly extended objects is lower.

The choice of pure computer or preliminary hardwsokition of mathemati-
cal algorithms used determine the distinction ofickes for processing gathered
information. In the first approach the mathematadgbrithms are implemented
as software. Therefore, the devices gathering mddion from detecting sys-
tems make its elementary transformations into aiddarm. In the second case,
mathematical algorithms are realized in hardwareyiteg out the required func-
tional transformation of the obtained informatidrnhen, the processed data is
transferred to the computer for interpretation aisdalization.

Mathematically, the tomographic problem statemeniscsts in the reconstruc-
tion of the studied object parameters using integ@éa obtained from measur-
ing lines. Generally, in the tomographic problens tiumber of equations is
much fewer than the number of elements of imagdé®lois studied. As a result,
the number of the unknowns in the equations arigingpmographic problem
solving exceeds the number of the equations. Bxdbnnection the problem of
reconstruction of the studied parameter using irpteta integral data is ill-
posed [2].

One can discern two groups of tomographic problamseng existing types
with the increasing complexity of solution. Thisngolexity is connected with
geometrical and physical characteristics of thedigtudied and with investiga-
tion method [3]:

1. Linear problems of computerized tomography agish the case of usage
of rectilinear measuring lines, whereas the integignal is a superposi-
tion of signals from segments of the measuring line

2. Nonlinear tomographic problems arising when timear measuring lines
or non-linear dependence of integral data on thasomed value caused
by physical properties of signal carrier are used.

At present a lot of algorithms applied to the restaunction of the information

about distributed physical field parameters havenhbdeveloped. This is related
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to both the extensive variety of tomographic prablefinitions and to ways of

their experimental realization and to persistefdref of researchers to develop
such an algorithm which would surpass the exitingsoat least in one of the
following characteristics: operating rate, restoies on the memory, resolution,
contrast, number of required projections etc. [3d3]e reconstructing algo-

rithms used for solving linear tomographic problezaa be separated into three
groups of methods [4]:

— algebraic (methods of regularization);

— integral (methods of filtration);

— analytical (methods of approximation).

In solving the nonlinear tomographic problems oas to adapt the existing
algorithms to the experiment conditions which, asile, leads to growing re-
quirements to computational capacity and to simelbais reduction of recon-
struction accuracy. In reality the measuring lia¢hg, the magnitude and nature
of the investigated object parameter on the integgmal magnitude can vary
which also lowers the accuracy of reconstructiorthgyafore-mentioned meth-
ods.

Neural network (NN) utilization is an alternativepmoach to tomographic
problem solution. Neural networks have a numbefawbrable features, the
most important qualities of them being adaptabiltyd generalization. The
adaptability of NN to specific conditions of theoptem is the result of training.
The generalization of a trained NN lies in its &pito solve a problem for ini-
tially unknown for NN distributions belonging toetlsame class as the ones used
for learning.

Among the most frequent types of NN applied to sgjvthe tomographic
problems one can specify a perceptron and an NNfe#dback (Hopfield NN).

The perceptron is a feedforward NN consisting ofesal layers of neurons.
The signal transfer in this NN is performed onlyime direction: from the input
layer to the output one, with the neurons of oryerdeing coupled only with
the neurons from another layer [6]. Perceptrons in@aase only one layer of neu-
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rons with a simple and transparent architecture lamided capabilities. As a
rule, such NN’s are used for particular classifmatof smooth functions. Since
this linear separation restricts the perceptronasgntation capabilities [7] addi-
tional layers are used forming multilayer percepsrapplied to general classifi-
cation by convex surfaces [8].

Fig. 1 shows the architecture of a three-layer gq@ron which is most fre-
quently applied to solving the tomographic probleifitse first layer of neurons

serves as NN inputs forming the input vectr={X, X, ... %} , where

X, %,... % are integral data detected by the measuring systamthe number
of neurons in the input layer being equal to thenber of measuring lines. Be-
sides this, the first layer has no other functibime second layer of NN (the so
called hidden layer) takes the transformation efftrm:
K J—
s = f(ZwMij, j=12..3 (1)
k=1

wheres are output states of the second layer neuransare elements of the

matrix of inter-neuron coupling between the finstlaecond layers, determining
the coupling betweekth neuron of the first layer arjth neuron of the second

layer, §J are threshold potentials of the hidden layas the number of neurons
of the second layef,s empirically selected activation function, whishusually
linear, sigmoid (e.g. unipolar sigmoid or hyperbdiangent), radial-basis de-
pendencies [9]. The output layer of the neurongclly makes the linear trans-
formation:

Y =2 Ws+g,i=12..L, (2)

wherey; are activations of the output layer of the neuyepsare elements of the
matrix of inter-neuron coupling between the secand the third layersf are
threshold potentials of the output laykeris the number of the third layer neu-
rons. The number of the neurons in each layerusallysselected in accordance
with the conditions of the problem solved.
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The process of selection of the elements of thelaoy matrix and vectors of

threshold potentials_vjk, Wi, 6_’J ., 8 under minimization of the deviation between

the required and computed output values intendeddiution of some problem
Is referred to training of NN. Training of the peptron is carried out with train-
ing patterns being a set of pairs of NN input vexd and corresponding ini-
tially known output vectory ={vy, v, ... Y} . Perceptron training is an optimi-

zation problem which is, as a rule, solved by songthods as: gradient, simu-
lated annealing [10], their combinations etc. Itswehown in papers [11,12]
based on Kolmogorov theorem [13] that the percepwdh nonlinear mono-

tonic finite function of activation is capable gf@oximating continuous map-
pings to any desired degree of accuracy, so theepa#on can solve the prob-
lems of reconstruction tomography.

NN'’s with feedback, for first time developed by Hiefd for stepwise activa-
tion function, have a peculiarity of dynamic NNpesse, i.e. the computed out-
put cyclically modifies the input till achievemeuitthe required accuracy of the
information restoration [14]. Such NN'’s are dividiatb stable or unstable ones
using the attribute of stability or inconstancytloé output, accordingly. A subset
of feedback NN’s in which outputs finally reachtalde state is described by the
sufficient condition of stability for the first tienderived in Ref. [15]: if the ma-
trix of weight coefficients is symmetric and itat#ng diagonal consists of zeros
then this NN always converges to a stable pointvéi@r there may exist stable
NN with non-symmetric matrix of weight coefficienésd non-zero diagonal
elements as well as NN in which small deviatiomsrfrsufficient condition lead
to loss of stability.

In Hopfield NN the zero layeX does not take a computational function but
only feeds the outputs of NN backward to the ing&ig. 2). Each of the neu-
rons of the first layel calculates a weighted sum of its own inputs, gjvime
signal which is then transformed by NN into thepuiitsignalOUT. At this, the
solution of the reconstruction problem falls inbe following steps:
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1. An energy function is constructed so that a globinimum of this function
coincide with the problem solution.

2. The feedback is broken and the input vebitbfeeds into the NN. The out-
put values are calculated.

3. The feedback is closed and the NN is enableddependently change its
state (the relaxation). The relaxation processssaffer the output vector be-
comes constant, i.e. the energy function minimume&ched. The NN outputs
obtained solve the problem.

The NN with feedback perform the function of asatee memory. It means
that the NN using the vector fed on the input @eain the output one of the
vectors remembered before which is most similah&given input vector, in a
certain sense.

The Hopfield NN can work as autoassociative or fogtgsociative memory. In
the first mode the vector most resembling the infaattor is called from the li-
brary. The second mode of the heteroassociativeameraquires training with
a teacher using the sigmoid transfer function.his tase the NN works con-
tinuously and reliably reaches the global minimurthe deviation error [16].

In the Hopfield NN the memory matrix is formed byutmal external
multiplications of the library vectors with subseqgt summation. The library
vector is called by the vector-matrix multiplicatiof the input data and the
memory matrix. The derived vector is further exmbseo functional
transformation and used as the input data for tle mteration [17]. This
iterative process repeats until the required cayemee is achieved.

The drawback of the Hopfield NN’s is their tendernoystabilize at the local
minimum instead of global one. This difficulty isually overcome by means of
the NN class known as Boltzmann machines, in wthehneuron state changes
obey statistical laws instead of deterministic oji€3.

The method of data retrieval used in Hopfield Ndaied addressing by con-
tents. It is widely used in biological NN’'s andhighly promising for the crea-
tion of systems for the recognition of signals andges.
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In this paper we present a review of the modernmthods for solving both
linear and nonlinear problems of the reconstructoomography.

APPLICATION OF NN'S TO THE RECONSTRUCTION OF IMAGES
FROM PROJECTIONS

The procedure of the reconstruction of images ftioenprojections which is a

linear tomographic problem lies in finding of arkanwn vectorX ={xj}, con-

taining information about each pixel of the imageabout the investigated field
parameter in a certain point, using known companehnthe vector of the inte-

gral measurement¥ ={y,}, which is a sum:
Y =AX +N, 3)
where A ={a1.j} is the known projection matriy is the vector of random er-

rors. These problems are usually solved by the kedwn classical methods,
e.g. algebraic reconstruction technique, filteradkyprojection, series expansion
etc. [4]. However, with large number of pixels anthge density levels these
methods consume high computational capacities.dBesithe use of iterative
methods does not always restore the images witircisut quality while the
work takes much time. At the same time, the NN fasgomographic problem
solving is particularly promising in function recruction from small amount
of incoming data [19]. Therefore, for this classpobblems [20—24] the use of
NN’s was proposed. Most works in this area are dbame the application of
Hopfield NN [20,21].

Let us briefly describe the modified Hopfield NNlized for solving the prob-
lems of computerized tomography. In the tomogragiricblem solving ap-
proach based on series expansion assuming neljtigdfinoiseN, the solution
of the tomographic problem can be reduced to thtengfation of the norm
(“energy”):

n
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under the constraints imposed ¥n X, <X < X ., ]=12..J, wherex,

are the components of vectdr Instead of the norm (4) one can use enthropy
function, for example, the Shannon enthropy takeh thie minus sign:

g(x)=ilen>g, x >0. (5)

The optimization problem can be solved by meartdagifield NN. For this pur-
pose a general energy function is introduced:

E(X)=vg(X)+> p(r(x)). (6)
i=1
where the penalty parameter is selected as a positive number,
r(X)=>a,x -y . The penalty functiop can take various forms, e.g. square
i=1
dependence [21]:
1.,
r)==r-.
p(r) =3

The minimization of the energE(X) reduces to solving a set of nonlinear

differential equations which describes a modifiexpfield NN:

dd)ij =_”a§§<X) ="{V¢(Xi)+g%”’(r)}, (7)

i

ag(X)
16)4

where the training ratg is guessed as some positive numlger, are

j
ap(r)
or

activation functions of the output neurond(r,) = are activation func-

tions of the input neuronsjs time.

The calculations of Chichocki et al. [21] show tiNdti's of this type can re-
construct such model images as, e.g. Shepp-Logantqn [22] modeling a
section of a human head and frequently used foingeshe reconstruction to-
mography methods. Fig. 3 depicts the results ofréeenstruction of a model
image obtained by means of a modified Hopfield IRH][
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Afterwards, Wang and Wahl [23] proposed an improsetof the above ap-
proach on the basis of vector-enthropy optimizatidmey advanced the idea of
using a linear combination of image enthropy, acfiom of standard deviation
between original and reconstructed data, as arctgefunctiong. This prob-
lem is also solved by the authors by means of aifreddHopfield NN. Com-
parison of reconstructed patterns made in Ref. @8] the results obtained by
the convolution method and algebraic reconstructemhnique shows the ad-
vantage of the proposed NN approach.

The linear problems of reconstruction tomography edso be solved by
means of perceptron NN'’s. For example Ali et a4, 5] utilized the perceptron
with nonlinear hidden layer the activation functiohwhich was chosen in the
form of a sigmoid. The training was done on computedeled measurements
by means of error back propagation and simulate@amg. The authors dem-
onstrated that the result of the NN model test datanstruction is more accu-
rate than the one obtained by algebraic methods.

APPLICATION OF NN'S TO RECONSTRUCTION OF RADIO-
FREQUENCY ELECTROMAGNETIC TOMOGRAPHY DATA

The radio-frequency electromagnetic tomographynsetghod of acquiring in-
formation about the distribution of electromagneisrameters (electrical im-
pedance, conductivity or capacitance, magneticandn) inside a certain ob-
ject. The electrical impedance tomography (ElThisst frequently used, for ex-
ample, in medicine, for the study of complex liqgis pipe flows, in geophys-
ics, etc. This type of tomography utilizes a systdralectrodes mounted around
an investigated object. This system enables usetisare the resistance between
two electrodes pairwise. The reconstruction ofstiuelied parameter distribution
Is a complex nonlinear problem which is solved witbdified methods of solv-
ing of linear problems of computerized tomograp®§,27] or, otherwise, with
the development of specific methods [28]. As fatkbas early 1990s the appli-
cation of NN’s to solving this problem was advanckitially a simple NN of
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ADALINE type was used but the reconstruction wathea crude [29]. Later,
Nooralahiyan and Hoyle applied NN of perceptroretypth one hidden layer to
the reconstruction and simultaneous classificatibtinree-component flows in-
side circular perimeter pipes [30]. The authorssehdouble-sigmoid as an acti-
vation function of the hidden layer. This methodtloé reconstruction of the
flow fraction distribution and classification prodad for simplifying the NN
structure.

Afterwards, this approach was applied to the retooBon of three-
component flows studied with an experimental séBlp. Examples of original
and reconstructed flow sections are showed in&ig.

The authors of Refs. [32,33] used perceptron indlgerithms of the simu-
lated electrical impedance image reconstructioms€NN’s have linear [32] or
nonlinear [33] hidden layers with few inputs andpais for the reconstruction
of image segments. The use of this approach alldlaeduthors to significantly
reduce requirements to computational power butltmered the generalization
capabilities of NN'’s.

A more complex problem of the electrical impedadistribution reconstruc-
tion obtained in medical surveys of patients wasesb by Korjenevsky [34].
For this purpose he also applied two types of Nii'e:two-layer linear NN and
the perceptron described by equations (1), (2)vhich of the neurons number
of second layer was 60 and the number of neurotiseitfirst layer was chosen
to be equal to the quantity of input measuremdniperbolic tangent was used
as the activation function.

The sets of training patterns of about 1.5-2 thoddanown distributions were
used for training. The noise signal was addedlgdoning patterns, the value of
it being on the order of 1% of maximal input sigfetel. The author was util-
ized the error back propagation using conjugatdigra optimization.

Korjenevsky [34] also applied the proposed NN téghea to solving of an in-
verse problem arising in magnetic induction tompgsawhich uses the meas-
urement of the magnetic field perturbations causedddy currents and allows
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finding the distribution of electrical conductivity a specimen. This problem is
similar to the inverse problem occurring in EIT.

The results of the reconstruction of randomly gatezl model distributions by
the NN with nonlinear hidden layer are quite satsbry (Fig. 5). The linear NN
reconstructs the test distribution with lower aexyrthan in the case of nonlin-
ear NN or back projection technique with synthediseference data. The at-
tempts to reconstruct experimentally obtained ithigtrons of electrical conduc-
tivity by nonlinear NN trained by means of randorgbnerated model distribu-
tions did not yield any satisfactory result. Thehan also pointed of the defi-
ciency of NN use — the necessity to create largeuatnof training patterns.

Besides the algorithms based on gradient optinaizatiaining the Bayesian
approach can be applied [35]. This method allowsenadfective training of NN
solving the inverse problem of EIT but it requim@sor information about the
distribution being reconstructed. Vehtari and Lamapi showed [36] that a NN
trained with a Bayesian algorithm more accuratefntwith gradient optimiza-
tion one, reconstructs the modeled distributiomsegenting gas bubble forma-
tion inside a pipe with liquid (two-component meaiu

Warsito and Fan applied the technique worked outhenbasis of modified
Hopfield network [23] to the image reconstructiar flow systems of media
consisting of various states: gaseous, liquidds@v,38]. The authors selected
the superposition of negative image enthropy, weiglsquare error function be-
tween measured and estimated data and sum of nfammity and peakedness
functions as an objective function for the optiniiza. Warsito and Fan recon-
structed real data obtained with an experimentalpsd hey showed that the test
flow sections were reconstructed more accuratelthbyNN than by means of a
linear back projection or simultaneous image rettanson technique [39].

APPLICATION OF NN'S TO DATA RECONSTRUCTION OF FIBER -
OPTIC TOMOGRAPHY

The fiber-optic tomography is the method of theornfation reconstruction
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of physical field parameters (temperature, defoimnaimpact detection, etc.) of
data obtained from fiber-optic measuring line asteuch lines are stacked un-
der the required scanning scheme on the investigateas and form a fiber-
optic sensor array [40]. The fiber-optic sensoagritight beam detectors and
devices processing obtained information form fibptic sensor system. The op-
tical signals on the output of measuring lines falkaa array, which contains the
information on parameters of physical fields. Riak processing mutable op-
tical signals from all fiber-optic measuring lineSthe system is extremely im-
portant. Fiber-optic measuring systems have vaoégxclusive advantages. It
Is connected to widely known features of fiber-ogiement base in comparison
with devices on the basis of other elements: wiedividth of optical fiber, its
insensitivity to electromagnetic noise, small wejglomplexity of realization of
the illegal access to optical information and ottiearacteristics of fiber [41,42].
Refs. [43-45] show results of studied distributienonstruction by means of
linear perceptrons. Training of the NN and recardton of test images was
made for smooth distributions. The authors usednibdification delta-rule of

elements of the matrix of connectiomgfor training:
Aw, = ex(y - ), (8)
where¢is the parameter specifying training ra¢es the state oith neuron of

the input layer,y; are values of outputs of NN for the training patté<ulchin

et al. [44,46] found expression for optimal valuesofor linear perceptrons.
Fig. 6 depicts results of reconstruction of theldated test image of the array of
8x 8 measuring lines [43]. For this purpose the twaefagerceptron NN with
31 input and 64 output neurons was modeled. Thefddhed the matrix of
connections for fiber-optic measuring system besagable to reconstruct the
distribution of investigated physical field. Forneat of the matrix of connec-
tions has demanded 22500 cycles at 32 training.pair

Afterwards, Kulchin et al. [45] using above-mengdnsimulation represent
NN implemented as a set of amplitude hologramsrdambon disk holographic
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carrier. The NN was intended for processing outfata from distributed fiber-

optic measuring system. It is experimentally shothat this system allows to
reconstruct functions of spatial distribution o thtudied physical parameter in
a certain point with the error not exceeding 20%.

Later, the model of three-layer perceptron with owalinear hidden layer
was used for solving the tomographic problem [41-&fansition to such type
of NN allowed to restore more complex distributiarfsthe investigated field,
e.g. peaks in a form of Gaussian distribution beimaye close to practice. So,
Kulchin et al. [50] made the mock-up of the fibgrtical sensor system detect-
ing the field of acoustic fluctuations. A sketchtbfs mock-up with the array
size4x 4 is shown in Fig. 7.

The NN, used in Refs. [47-49], reconstructing tlaadobtained by the
mock-up of the interferometric fiber-optic sensgstem [50], was described by
the equations (1), (2); with hyperbolic tangentigean activation function. For
the sensor array shown in Fig. 7, the input andldndlayers containedn-1
neurons being equal to number of fiber-optic mdaaguines, and the third out-
put layer containechx n neurons, corresponding the number of sites of the
measuring system. The NN could not have threshotdntials, in that case it

was considered thaﬁj =0 and@g =0.
The reconstruction accuracy of the investigatedsyay field distribution

was defined by quality of NN training. The deviatibetween original and re-
stored by NN distributions was defined by expreassio

D= (v - %), (©)

whereu is the number of pair of input and output vecfoosn training page §

Is the required state of the output neuron. Theleoation of gradient methods
and elements of simulated annealing made avaikffdetive NN training. The
training process stopped after a certain countogdative functionD iterations

being on order of several millions. Fig. 8 showsutes of NN reconstruction of
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the acoustic oscillations field studied by the maogkof fiber-optic sensor sys-
tem [48].

Kamenev et al. [49] added noise into learning pastén order to more effec-
tively train NN. This noise simulated random errarsing from measurements,
the limited accuracy of sensors, etc. For this psepthe set of training patterns
was increased in three times due to addition of/dwtors formed as follows:

yi/,jnoise = yilu (1+,7) ’ (10)
where ¥/, ... is the training pattern with noise additiopis the random number

from the interval[—g,g], £ is “noise intensity”. The authors in detail inties

gated influence of “noise intensity” on rate andhlgy of perceptron training,
and also on accuracy of reconstruction of testiligions.

Existence of both positive and negative aspech$Ni$ encourages research-
ers to combine various NN’s with as well other nemtlatical algorithms as
among themselves to obtain new highly effective motimg algorithms. So,
Kulchin et al. [51] presented promising algorithm the basis of the combina-
tion of algebraic methods carrying out prelimingmpcessing of information
which is then fed onto perceptron NN. This NN hddn&uron in the input and
64 neuron in the output layers.

Tu and Huang [52] advanced two new combined NN puslof data proc-
essing defining coordinates and values of extede&brmation. This methods
combine perceptron with one hidden layer and KohddBl [53]. The authors
using numerical experiment showed that applicatibliohonen NN to solving
the problem of localization of impact position dbefr-optic sensing array of
lines of size 4 x 4 in the combination with nonAng@erceptron allows to reach
the error of mismatch 10in estimation of magnitude of external impact gsin
less than 8000 training cycles. The result obtalmethe authors allowed to use
Kohonen NN for localization of position of impagctsfiber-optic tomographic
problem.
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OTHER TYPES OF TOMOGRAPHIC PROBLEMS

The studies of NN application to the restoratiortarhographic data are not
restricted to the afore mentioned problems. Oneeraoea of NN application in
tomography is the reconstruction of data obtaingh the help of single photon
emission computerized tomography (SPECT) and mwsémission tomography
(PET). Both types are frequently utilized in medecand are based on the detec-
tion of collimated yradiation. In the case of PET, two photons arectet
which are emitted in opposite directions resulfirgn annihilation of positrons
arising from/'-decay of the isotopes introduced into the patidmdd. For sin-
gle photon emission computerized tomography theomes withS -decay and

simultaneous emission géquanta are utilized. PET uses more short-livirg is
topes which provide for higher space and time reswi but, because of the fast
decay, these isotopes must be prepared by meanglotron just before the

survey. With the use of these methods a linear ¢waphic problem arises

which is usually solved by the filtered back prdjee technique. But this algo-

rithm may not give acceptable reconstruction quadit that, this technique may
not reconstruct the image in real-time.

Comtat and Morel [54] applied a self-organizing ikokn NN to the recon-
struction of data obtained from the PET simulatidlihough the data recon-
struction accuracy was lower than in the caseltdfréd back projection tech-
nique the authors indicate the independence ouieel NN approach on the
number of utilized sensors which is important forversality of the computa-
tional algorithms.

The utilization of the perceptron appeared to beenpyoductive for solving
this tomographic problem [55-58]. Kerr and Barft?] used for reconstruction
of SPECT data the perceptron with nonlinear lagglémented on the basis of
a massively parallel SIMD computer (SIMD means kngstruction, multiple
data). This computer consists of a large numbesiraple processors intercon-

nected into an array (Kerr and Bartlet used thayanf 64x 64 processors) con-
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trolled by a more powerful processor. This typeamputer has the property of
working in parallel. Each processor of this SIMDquuter performed the role
of a separate neuron. The use of this paralleésysilowed the authors to attain
fast training of NN. The authors showed that tlaéned NN is capable of rather
correct visualizing test images of organs. Morepierr and Bartlet indicated
that the NN trained on SIMD computer can subsedy®etused on an ordinary
computer. Bevilacqua et al. [59] used the sameaambr to training by means of
a SIMD computer, but with the utilization of the N\DALINE NN, a two-layer
linear perceptron, for the restoration of the P&fad

Rodriguez et al. [56] showed that the NN, trainethwest patterns in the form
of Gaussian distributions is capable of reconsitngcimages of phantoms of a
human head section and of letters.

We should also note the studies on the applicaifddN’s to the reconstruc-
tion of ultrasonic tomography data. Hutchins e{@0] applied a multilayer per-

ceptron to the restoration of simulated and expemtied data of a 4 4 pixel ar-
ray. NN proved to be able to locate the presenadetdct in the area being in-
vestigated; however, the obtained localization wery approximate, that might
be due to the limited computational capacitiesfingant for training an NN.

CONCLUSIONS

As follows from the above, NN's can be used forvsa the inverse problems
of tomography. As a rule, for solving these typéproblems it is effective to
use NN'’s of two types: the Hopfield network and gezceptron. The merits of
the perceptron use for the solution of reconstomctomography problems in-
clude high rate of data processing, ability of gaheation, the simple network
structure, which can be produced on the basis tf &lectronic and optical ele-
ments. The deficiencies of these NN'’s are the rsgtyesf using a large quantity
of training patterns and the high duration of trening process. It should be
noted that if the simultaneous classification adqassed data is required, then
this task can also be solved by means of a pemegtowever, the methods se-
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lection of the training patterns and combining tHI¥ with other computational
algorithms call for further study.

The Hopfield networks are usually used for the sofuof linear tomographic
problems. The merit of this class of NN's is theetce of the need of using the
large number of training patterns, the deficien@es. limited possibilities of
generalization and difficulty of realization in tham of an optoelectronic NN.

We should acknowledge the advantages of opticdimastof NN’'s implemen-
tation solving the tomographic problem, in partasulwith the aid of the holo-
grams [45], based on the results of works [61,68} also the realization of
perceptron in the form of collected optical neulipshbuilt on the basis of pla-
nar waveguides and prisms [63], which permit palglrocessing of integral
data.

17



I.V. Denisov, Yu.N. Kulchin, A.V. Panov, N.A. Rylidlenko. — Optical Memory & Neural Networks, 2008,(1), pp. 45-58

REFERENCES

[1] F. Natterer,'The Mathematics of Computerized Tomograph$,G. Teub-
ner and John Wiley and Sons, Stuttgart, 1986.

[2] A.V. Tikhonov, V.Y. Arsenin,“Solution of lll-posed Problems,Winston,
Washington, DC, 1977.

[3] V.V. Pikalov, N.G. Preobrazhenskii, “Computeded tomography and
physical experiment,Sov. Phys. Uspekhvol. 26, no. 11, pp. 974-990,
1983.

[4] G.T. Herman, Image Reconstruction from Projections: the Fundautads
of Computerized TomographyXcademic Press, San Francisco, 1980.

[5] A.C. Kak, M. Slaney,Principles of Computerized Tomographic Imaging,”
Society of Industrial and Applied Mathematics, 2001

[6] B. Widrow, M.A. Lehr “30 years of adaptive nalimetworks: perceptron,
madaline, and backpropagatiorRtoc. IEEE vol. 78, no. 9, pp. 1415-
1442, 1990.

[7] M. Minsky and S. PapertPerceptrons: An Introduction to Computational
Geometry,”MIT Press, Cambridge, Mass, 19609.

[8] P.D. WassermariNeural Computing. Theory and PracticeYan Nostrand
Reinhold, N.Y., 1989.

[9] Handbook of Neural Network signal processingds. Yu Hen Hu, Jeng-
Neng Hwang, CRC Press, Boca Raton, London, New,Yéfkshington,
D.C., 2002.

[10] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, “Qptization by simulated an-
nealing,”Sciencevol. 220, no. 4598, pp. 671-680, 1983.

[11] K. Funahashi “On the approximate realizatidncontinuous mapping by
neural networks”Neural Networksvol. 2, pp. 183-192, 1989.

[12] K. Hornik, M. Stinchcombe, H. White, “Multilay feedforward networks
are universal approximatorf\eural Networksvol. 2, pp. 359-366, 1989.

[13] A.N. Kolmogorov, “On the Representation of @anous Functions of

18



I.V. Denisov, Yu.N. Kulchin, A.V. Panov, N.A. Rylidlenko. — Optical Memory & Neural Networks, 2008,(1), pp. 45-58

Several Variables by Superposition of Continuousdtions of one Vari-
able and Addition,Dokl. Akad. Nauk SSSRol. 114, pp. 369-373, 1957.

[14] J.J. Hopfield, “Neural networks and physicgdtems with emergent collec-
tive computational abilities,Proc. Natl. Acad. Sci. USAol. 79, pp. 2554—
2558, 1982.

[15] M.A. Cohen, S.O. Grossberg, “Absolute stapilif global pattern forma-
tion and parallel memory storage by competitiveraenetworks,”|EEE
Trans. Systems, Man and Cybernetigsl. 13, pp. 815-826, 1983.

[16] J.J. Horfield, “Neural with graded responsedaollective computational
properties like those of two-state neurori&@c. Natl. Acad. Sci. USAol.
81, no. 10, pp. 3088-3092, 1984.

[17] J.J. Hopfield, D.W. Tank, “Computing with nalicircuits: a model,'Sci-
ence vol. 233, pp. 625-633, 1986.

[18] O.E. Hinton, T.J. Sejnowski, “Learning ande&ining in Boltzmann ma-
chines,” In Parallel Distributed Processing, volpf. 282-317, MIT Press,
Cambridge, MA, 1986.

[19] X.F. Ma, M. Fukuhara, T. Takeda, “Neural NetwT image reconstruc-
tion method for small amount of projection datdyiclear Instruments and
Methods in Physics Researchwdl. 449, pp. 366-377, 2000.

[20] M. Morisue, K. Sakai, H. Koinuma, “Neural neivks for computed tomo-
graphy,”Proc. IEEE vol. 6, pp. 2893-2896, 1992.

[21] A. Cichocki, R. Unbehauen, M. Lendl, K. Weiadi “Neural networks for
linear inverse problems with incomplete data eslgcin applications to
signal and image reconstructiofNeurocomputingvol. 8, pp. 7-41, 1995.

[22] L.A. Shepp, B.F. Logan, “The Fourier reconstion of a head section,”
IEEE Trans. Nucl. Sgivol. 21, pp. 21-43, 1974.

[23] Y. Wang, F.M. Wahl, “Vector-entropy optimizati-based neural-network
approach to image reconstruction from projectiomS8EE Trans. Neural
Networks vol. 8, pp. 1008-1014, 1997.

[24] F. Ali, Z. Nakao, Y.-W. Chen, “Two new neuratwork approaches to two-

16



I.V. Denisov, Yu.N. Kulchin, A.V. Panov, N.A. Rylidlenko. — Optical Memory & Neural Networks, 2008,(1), pp. 45-58

dimensional CT image reconstructiomtizzy Sets and Systenasl. 103,
pp. 295-302, 1999.

[25] F. Ali, Z. Nakao, Y.-W. Chen, K. Matsuo, |. ®wa, “An adaptive back-
propagation algorithm for limited-angle CT imageamstruction,”|EICE
Trans. Fundamentalsol. E83-A, no. 6, pp. 1049-1058, 2000.

[26] @. Isaksen, “A review of reconstruction tedjunes for capacitance tomo-
graphy,”Meas. Sci. Technolvol. 7, pp. 325-337, 1996.

[27] W.Q. Yang, L. Peng, “Image reconstruction aitjons for electrical
capacitance tomographyleas. Sci. Technolvol. 14, pp. R1-R13, 2003.

[28] L. Borcea, “Electrical impedance tomographyverse Problemsvol. 18,
pp. R99-R136, 2002.

[29] A. Adler, R. Guardo, “A neural network imageconstruction technique for
electrical impedance tomographyEEE Trans. Med. Imag.vol. 3, pp.
594-600, 1994.

[30] A.Y. Nooralahiyan, B.S. Hoyle, “Three-compomndamographic flow im-
aging using artificial neural network reconstruntioChemical Engineer-
ing Sciencevol. 52, pp. 2139-2148, 1997.

[31] G. Teague, J. Tapson, Q. Smit, “Neural netwagonstruction for tomo-
graphy of a gravel-air-seawater mixtur&jéas. Sci. Technolvol. 12, pp.
1102-1108, 2001.

[32] E. Ratajwicz-Mikotajczak, G.H. Shirkoohi, Jik8ra, “Two ANN Recon-
struction methods for electrical impedance tomokydplEEE Trans.
Magn, vol. 34, pp. 2964-2967, 1998.

[33] A. Netajatali, I.R. Ciric, “An lterative algdhm for electrical impedance
imaging using neural networkslEEE Trans. Magn.vol. 34, pp. 2940-
2943, 1998.

[34] A.V. Korjenevsky, “Neural network algorithm®if solving inverse prob-
lems in radio frequency tomographyyeyrokomp'utery: razrabotka i pri-
menenieno. 9-10, pp. 26-33, 2002.

[35] R.M. Neal, “Bayesian Learning for Neural Netks,” vol. 118 ofLecture

20



I.V. Denisov, Yu.N. Kulchin, A.V. Panov, N.A. Rylidlenko. — Optical Memory & Neural Networks, 2008,(1), pp. 45-58

Notes in StatistigsSpringer-Verlag, 1996.

[36] A. Vehtari, J. Lampinen, “Bayesian MLP neunatworks for image analy-
sis,” Pattern Recognition Lettersol. 21, pp. 1183-1191, 2000.

[37] W. Warsito, L.-S. Fan, “Measurement of reahdi flow structures in gas-
liquid and gas-liquid-solid systems using electraapacitance tomography
(ECT)”, Chemical Engineering Sciencel. 56, pp. 6455-6462, 2001.

[38] W. Warsito, L.-S. Fan, “Neural network basedltircriterion optimization
image reconstruction technique for imaging two- Hirde-phase flow sys-
tems using electrical capacitance tomograpMgas. Sci. Technglvol.
12, pp. 2198-2210, 2001.

[39] B. Su, Y. Zhang, L. Peng, D. Yao, B. Zhangh&Tuse of simultaneous it-
erative reconstruction technique for electrical amafance tomography,”
Chemical Engineering Journalol. 77, no. 1-2, pp. 37-41, 2000.

[40] Yu.N. Kulchin, “Distributed fiber-optical measuring systemsFizmatlit,
Moscow, 2001 (in Russian).

[41] A.W. Snyder, J.D. Love'Optical waveguide theory,'Chapman and Hall,
New York, 1983.

[42] Francis T.S. Yu, lam-Choon KhotPrinciples of optical engineering,”
John Wiley and Sons, 1990.

[43] Yu. Kulchin, O. Kameneyv, “Self-training neuraktwork model for real
time tomography data processingidzer Biology vol. 4 no. 2, pp. 625-
629, 1995.

[44] Yu. Kulchin, O. Vitrik, Yu. Petrov, O. Kirichgko, O. Kamenev, R. Ro-
mashko, I. Denisov, “Holographic neural network poocessing of signals
of distributed optical fiber measuring networkstwihe tomographic prin-
ciple of data gatheringQptical Memory & Neural Networksol. 6, no. 2,
pp. 149-156, 1997.

[45] Yu.N. Kulchin, I.V. Denisov, O. T. Kamenev, fffbelectronic neural sys-
tem for processing the output data from a fibereopteasuring network,”
Technical Physics Lettersvol. 25,. no. 3, pp. 235-236, 1999.

21



I.V. Denisov, Yu.N. Kulchin, A.V. Panov, N.A. Rylidlenko. — Optical Memory & Neural Networks, 2008,(1), pp. 45-58

[46] Yu.N. Kulchin, I.V. Denisov, E.V. Denisova, éBction of optimal parame-
ter of speed of training of neural network percepttype,” Proc. SPIE
vol. 5129. pp. 162-167, 2003.

[47] Yu.N. Kilchin, A.V. Panov, “Neural network foreconstruction of signal
from distributed measuring system of optical anol# sensors,Pacific
Science Reviewol. 3, pp. 1-4, 2001.

[48] I.V. Denisov, O.T. Kamenev, A.Yu. Kim, Yu.N.Ufchin, A.V. Panov, “Neu-
ral data processing method for fiber-optic disttdsbmeasuring systems,”
Optical Memory & Neural Networksol. 12, no. 3, pp. 165-172, 2003.

[49] O.T. Kamenev, Yu.N. Kulchin, A.V. Panov, Yu.Betrov, “Effective learn-
ing algorithm for a neural-like opto-electronic togmaphical system,”
Proc. SPIE vol. 5851 (in press).

[50] Yu.N. Kulchin, O.T. Kamenev, Yu.S. Petrov, Kantur, “Fiber optical dis-
tributed network for dynamic deformation measuringroc. SPIE vol.
5129, pp. 68-73, 2003.

[51] Yu.N. Kulchin, E.V. Denisova, I.V. Denisov, #lication of algebraic and
neural-like methods for reconstruction of distribatfunctions of physical
fields,” Optical Memory & Neural Networksol. 12, no. 4, pp. 283-297,
2003.

[52] Y. Tu, S. Huang, “Two kinds of neural netwalgorithms suitable for fiber
optic sensing array signal processinght. Eng, vol. 35, no. 8, pp. 2196—
2201, 1996.

[53] T. Kohonen “Self-organizing maps: optimizatiapproaches,” In Artificial
Neural Networks, Proceedings of ICANN'91, North-ldad, Amsterdam,
vol. 2, pp. 981-989, 1991.

[54] C. Comtat, C. Morel, “Approximate reconstractiof PET data with a self-
organizing neural network)EEE Trans. Neural Networksol. 6, pp. 783—
789, 1995.

[55] J.P. Kerr, E.B. Bartlet “Medical image prodesgsutilizing neural networks
trained on a massively parallel comput&Zdmp. Biol. Med.vol. 25, pp.

22



I.V. Denisov, Yu.N. Kulchin, A.V. Panov, N.A. Rylidlenko. — Optical Memory & Neural Networks, 2008,(1), pp. 45-58

393-394, 1995.

[56] A.F. Rodriguez, W.E. Blass, J.H. Missimer, Klleenders, “Atrtificial neu-
ral network Radon inversion for image reconstrugtidVled. Phys. vol.
28, pp. 508-514, 2001.

[57] P. Paschalis, N.D. Giokaris, A. Karabarbous¥X. Loudos, D. Maintas,
C.N. Papanicolas, V. Spanoudaki, Ch. Tsoumpas, tlars, “Tomo-
graphic image reconstruction using Artificial NeluNetworks,” Nuclear
Instruments and Methods in Physics Researchioh 527, pp. 211-215,
2004.

[58] P. Knoll, S. Mirzaei, A. Mullner, T. Leith, KKoriska, H. Kbéhn, M. Neu-
mann, “An artificial neural net and error backprga&on to reconstruct
single photon emission computerized tomography,tdaiad. Phys.vol.
26, pp. 244-248, 1999.

[59] A. Bevilacqua, D. Bollini, R. Campanini, N. heonelli, M. Galli, “A new
approach to image reconstruction in positron emis$omography using
artificial neural networks,International Journal of Modern Physics @I.
9, no. 1, 71-85, 1998.

[60] D.A. Hutchins, J.T. Mottram, E.L. Hines, P.1€Coran, D.M. Anthony, “A
neural network approach to ultrasonic tomograpRygc. IEEE vol. 1, pp.
365-368, 1992.

[61] H.J. White, N.B. Aldridge, I. Lindsay, “Digitaand analogue holographic
associative memoriesQpt. Eng, vol. 27, pp. 30-37, 1988.

[62] J.S. Jang, S.W. Jung, S.Y. Lee, S.Y. Shin,ti€yh implementation of the
Hopfield model for two-dimensional associative meyioOpt. Lett, vol.
13, pp. 248-250, 1988.

[63] Yu.N. Kulchin, L.V. Denisov, E.V. Denisova, . Piskunov, “Prismatic
neural chip for distributed measuring network®gtical Memory & Neu-
ral Networks vol. 12, no. 3, pp. 237-242, 2003.

23



I.V. Denisov, Yu.N. Kulchin, A.V. Panov, N.A. Rylidlenko. — Optical Memory & Neural Networks, 2008,(1), pp. 45-58

FIGURE CAPTIONS

Fig. 1. Schematic diagram of a three-layer peroeptieural network.
Fig. 2. Hopfield neural network with two layers.
Fig. 3. Reconstructed by the NN [21] Shepp-Logaanpbm image.d) squared

relationshipg(x) in formula (6), b) g(x) is negative Shannon entropy (5).

Fig. 4. Results of reconstruction of experimentafadof electrical impedance
tomography [31]. On the right of figure originaltdare shown, the left part de-
picts NN reconstruction. Different gradations cepend to various components
of studied mixture.

Fig. 5. Results of EIT visualization of simulatddatrical conductivity distribu-
tions by the perceptron with nonlinear hidden Ig@&]. On the left part of the
figure original data are displayed, on the righttlod figure the results of NN
reconstruction are depicted.

Fig. 6. The original distribution (a) and resultitsf reconstruction by two-layer
perceptron with linear activation function (b) [43]

Fig. 7. The architecture of fiber-optic sensor sgst

Fig. 8. The original (a) and reconstructed by th¢ (d) acoustic field distribu-
tion [48]. The original distribution was detectedwthe mock-up of the inter-
ferometric fiber-optic measuring system with sides4 [50]. The dots on base

plane depict isolines.
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Fig. 1. Schematic diagram of a three-layer perogpteural network.
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Fig. 2. Hopfield neural network with two layers.
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Fig. 3. Reconstructed by the NN [21] Shepp-Logaanpbm image.q) squared

relationshipg(x) in formula (6), b) g(x) is negative Shannon entropy (5).
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Fig. 4. Results of reconstruction of experimentaadof electrical impedance
tomography [31]. On the right of figure originaltdare shown, the left part de-
picts NN reconstruction. Different gradations cepend to various components
of studied mixture.
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Fig. 5. Results of EIT visualization of simulatddatrical conductivity distribu-
tions by the perceptron with nonlinear hidden Iga&. On the left part of the
figure original data are displayed, on the rightha figure the results of NN re-

construction are depicted.
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(b)

Fig. 6. The original distribution (a) and resultitsf reconstruction by two-layer

perceptron with linear activation function (b) [43]
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Fig. 7. The architecture of fiber-optic sensor sgst

(a) (b)
Fig. 8. The original (a) and reconstructed by th (d) acoustic field distribu-

tion [48]. The original distribution was detectedwthe mock-up of the inter-
ferometric fiber-optic measuring system with sides4 [50]. The dots on base

plane depict isolines.
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