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ABSTRACT 

We review the papers devoted to solution of reconstruction tomographic prob-

lems by using neural networks. Recent developments in the solution of linear 

and non-linear tomographic problems in various types of tomography are sur-

veyed. 
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INTRODUCTION 

In the past few decades the problem of the tomographic reconstruction of im-

ages and physical fields (objects from hereon) distribution functions has become 

vital due to fast evolution of computers which allows creation and application of 

methods to processing information from measuring devices [1]. 

Existing measuring systems vary in the kinds of information carriers and com-

ponents depending on type and size fed of objects under study. The methods of 

information gathering by the measuring systems and of subsequent processing of 

this information depend on the imposed requirements to the reconstructing to-

mography approaches.  

Basically, both parallel and serial data gathering techniques may be imple-

mented. The first technique enables us to gather large data arrays within one 

step. But this method has a very complex implementation architecture. The evi-

dent advantage of the second approach is its implementation architecture sim-
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plicity while its data processing rate that has a significant effect on the recon-

struction of the greatly extended objects is lower. 

The choice of pure computer or preliminary hardware solution of mathemati-

cal algorithms used determine the distinction of devices for processing gathered 

information. In the first approach the mathematical algorithms are implemented 

as software. Therefore, the devices gathering information from detecting sys-

tems make its elementary transformations into digital form. In the second case, 

mathematical algorithms are realized in hardware carrying out the required func-

tional transformation of the obtained information. Then, the processed data is 

transferred to the computer for interpretation and visualization. 

Mathematically, the tomographic problem statement consists in the reconstruc-

tion of the studied object parameters using integral data obtained from measur-

ing lines. Generally, in the tomographic problem the number of equations is 

much fewer than the number of elements of images or fields studied. As a result, 

the number of the unknowns in the equations arising in tomographic problem 

solving exceeds the number of the equations. In this connection the problem of 

reconstruction of the studied parameter using incomplete integral data is ill-

posed [2]. 

One can discern two groups of tomographic problems among existing types 

with the increasing complexity of solution. This complexity is connected with 

geometrical and physical characteristics of the object studied and with investiga-

tion method [3]: 

1. Linear problems of computerized tomography arising in the case of usage 

of rectilinear measuring lines, whereas the integral signal is a superposi-

tion of signals from segments of the measuring line; 

2. Nonlinear tomographic problems arising when curvilinear measuring lines 

or non-linear dependence of integral data on the measured value caused 

by physical properties of signal carrier are used. 

At present a lot of algorithms applied to the reconstruction of the information 

about distributed physical field parameters have been developed. This is related 
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to both the extensive variety of tomographic problem definitions and to ways of 

their experimental realization and to persistent efforts of researchers to develop 

such an algorithm which would surpass the exiting ones at least in one of the 

following characteristics: operating rate, restrictions on the memory, resolution, 

contrast, number of required projections etc. [3–5]. The reconstructing algo-

rithms used for solving linear tomographic problems can be separated into three 

groups of methods [4]: 

— algebraic (methods of regularization); 

— integral (methods of filtration); 

— analytical (methods of approximation). 

In solving the nonlinear tomographic problems one has to adapt the existing 

algorithms to the experiment conditions which, as a rule, leads to growing re-

quirements to computational capacity and to simultaneous reduction of recon-

struction accuracy. In reality the measuring line paths, the magnitude and nature 

of the investigated object parameter on the integral signal magnitude can vary 

which also lowers the accuracy of reconstruction by the afore-mentioned meth-

ods. 

Neural network (NN) utilization is an alternative approach to tomographic 

problem solution. Neural networks have a number of favorable features, the 

most important qualities of them being adaptability and generalization. The 

adaptability of NN to specific conditions of the problem is the result of training. 

The generalization of a trained NN lies in its ability to solve a problem for ini-

tially unknown for NN distributions belonging to the same class as the ones used 

for learning. 

Among the most frequent types of NN applied to solving the tomographic 

problems one can specify a perceptron and an NN with feedback (Hopfield NN). 

The perceptron is a feedforward NN consisting of several layers of neurons. 

The signal transfer in this NN is performed only in one direction: from the input 

layer to the output one, with the neurons of one layer being coupled only with 

the neurons from another layer [6]. Perceptrons may have only one layer of neu-
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rons with a simple and transparent architecture and limited capabilities. As a 

rule, such NN’s are used for particular classification of smooth functions. Since 

this linear separation restricts the perceptron representation capabilities [7] addi-

tional layers are used forming multilayer perceptrons applied to general classifi-

cation by convex surfaces [8]. 

Fig. 1 shows the architecture of a three-layer perceptron which is most fre-

quently applied to solving the tomographic problems. The first layer of neurons 

serves as NN inputs forming the input vector 1 2{ , , }Kx x x=X … , where 

1 2, , Kx x x…  are integral data detected by the measuring system, K is the number 

of neurons in the input layer being equal to the number of measuring lines. Be-

sides this, the first layer has no other function. The second layer of NN (the so 

called hidden layer) takes the transformation of the form: 

 
1

K

j jk k j
k

s f w x θ
=

 = + 
 
∑ , 1,2j J= …  (1) 

where sj are output states of the second layer neurons, jkw  are elements of the 

matrix of inter-neuron coupling between the first and second layers, determining 

the coupling between kth neuron of the first layer and jth neuron of the second 

layer, jθ  are threshold potentials of the hidden layer, J is the number of neurons 

of the second layer, f is empirically selected activation function, which is usually 

linear, sigmoid (e.g. unipolar sigmoid or hyperbolic tangent), radial-basis de-

pendencies [9]. The output layer of the neurons typically makes the linear trans-

formation: 

 
1

J

i ij j i
j

y w s θ
=

= +∑ , 1,2i L= … , (2) 

where yi are activations of the output layer of the neurons, wij are elements of the 

matrix of inter-neuron coupling between the second and the third layers, θi are 

threshold potentials of the output layer, L is the number of the third layer neu-

rons. The number of the neurons in each layer is usually selected in accordance 

with the conditions of the problem solved. 
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The process of selection of the elements of the coupling matrix and vectors of 

threshold potentials jkw , wij, jθ , θi under minimization of the deviation between 

the required and computed output values intended for solution of some problem 

is referred to training of NN. Training of the perceptron is carried out with train-

ing patterns being a set of pairs of NN input vectors X and corresponding ini-

tially known output vectors 1 2{ , , }Ly y y=Y … . Perceptron training is an optimi-

zation problem which is, as a rule, solved by such methods as: gradient, simu-

lated annealing [10], their combinations etc. It was shown in papers [11,12] 

based on Kolmogorov theorem [13] that the perceptron with nonlinear mono-

tonic finite function of activation is capable of approximating continuous map-

pings to any desired degree of accuracy, so the perceptron can solve the prob-

lems of reconstruction tomography. 

NN’s with feedback, for first time developed by Hopfield for stepwise activa-

tion function, have a peculiarity of dynamic NN response, i.e. the computed out-

put cyclically modifies the input till achievement of the required accuracy of the 

information restoration [14]. Such NN’s are divided into stable or unstable ones 

using the attribute of stability or inconstancy of the output, accordingly. A subset 

of feedback NN’s in which outputs finally reach a stable state is described by the 

sufficient condition of stability for the first time derived in Ref. [15]: if the ma-

trix of weight coefficients is symmetric and its leading diagonal consists of zeros 

then this NN always converges to a stable point. However there may exist stable 

NN with non-symmetric matrix of weight coefficients and non-zero diagonal 

elements as well as NN in which small deviations from sufficient condition lead 

to loss of stability. 

In Hopfield NN the zero layer X does not take a computational function but 

only feeds the outputs of NN backward to the inputs (Fig. 2). Each of the neu-

rons of the first layer Y calculates a weighted sum of its own inputs, giving the 

signal which is then transformed by NN into the output signal OUT. At this, the 

solution of the reconstruction problem falls into the following steps: 
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1. An energy function is constructed so that a global minimum of this function 

coincide with the problem solution. 

2. The feedback is broken and the input vector IN feeds into the NN. The out-

put values are calculated. 

3. The feedback is closed and the NN is enabled to independently change its 

state (the relaxation). The relaxation process stops after the output vector be-

comes constant, i.e. the energy function minimum is reached. The NN outputs 

obtained solve the problem. 

The NN with feedback perform the function of associative memory. It means 

that the NN using the vector fed on the input creates on the output one of the 

vectors remembered before which is most similar to the given input vector, in a 

certain sense. 

The Hopfield NN can work as autoassociative or heteroassociative memory. In 

the first mode the vector most resembling the input vector is called from the li-

brary. The second mode of the heteroassociative memory requires training with 

a teacher using the sigmoid transfer function. In this case the NN works con-

tinuously and reliably reaches the global minimum of the deviation error [16]. 

In the Hopfield NN the memory matrix is formed by mutual external 

multiplications of the library vectors with subsequent summation. The library 

vector is called by the vector-matrix multiplication of the input data and the 

memory matrix. The derived vector is further exposed to functional 

transformation and used as the input data for the next iteration [17]. This 

iterative process repeats until the required convergence is achieved. 

The drawback of the Hopfield NN’s is their tendency to stabilize at the local 

minimum instead of global one. This difficulty is usually overcome by means of 

the NN class known as Boltzmann machines, in which the neuron state changes 

obey statistical laws instead of deterministic ones [18]. 

The method of data retrieval used in Hopfield NN is called addressing by con-

tents. It is widely used in biological NN’s and is highly promising for the crea-

tion of systems for the recognition of signals and images. 
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In this paper we present a review of the modern NN methods for solving both 

linear and nonlinear problems of the reconstruction tomography. 

APPLICATION OF NN’S TO THE RECONSTRUCTION OF IMAGES  

FROM PROJECTIONS 

The procedure of the reconstruction of images from the projections which is a 

linear tomographic problem lies in finding of an unknown vector { }jx=X , con-

taining information about each pixel of the image or about the investigated field 

parameter in a certain point, using known components of the vector of the inte-

gral measurements { }iy=Y , which is a sum: 

 = +Y AX N , (3) 

where { }ija=A  is the known projection matrix, N is the vector of random er-

rors. These problems are usually solved by the well known classical methods, 

e.g. algebraic reconstruction technique, filtered back projection, series expansion 

etc. [4]. However, with large number of pixels and image density levels these 

methods consume high computational capacities. Besides, the use of iterative 

methods does not always restore the images with sufficient quality while the 

work takes much time. At the same time, the NN use for tomographic problem 

solving is particularly promising in function reconstruction from small amount 

of incoming data [19]. Therefore, for this class of problems [20–24] the use of 

NN’s was proposed. Most works in this area are based on the application of 

Hopfield NN [20,21]. 

Let us briefly describe the modified Hopfield NN utilized for solving the prob-

lems of computerized tomography. In the tomographic problem solving ap-

proach based on series expansion assuming negligibility of noise N, the solution 

of the tomographic problem can be reduced to the optimization of the norm 

(“energy”): 

 2

1

1
( )

2

n

j
j

g x x
=

= ∑  (4) 
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under the constraints imposed on X: min max,j j jx x x≤ ≤  1,2j J= … , where jx  

are the components of vector X. Instead of the norm (4) one can use enthropy 

function, for example, the Shannon enthropy taken with the minus sign: 

 
1

( ) ln , 0
n

j j j
j

g x x x x
=

= >∑ . (5) 

The optimization problem can be solved by means of Hopfield NN. For this pur-

pose a general energy function is introduced: 

 ( ) ( ) ( )( )
1

m

i
i

E g p rν
=

= +∑X X X , (6) 

where the penalty parameter ν  is selected as a positive number, 

( )
1

n

i ij j j
j

r a x y
=

= −∑X . The penalty function p can take various forms, e.g. square 

dependence [21]: 

 ( ) 21

2
p r r= . 

The minimization of the energy ( )E X  reduces to solving a set of nonlinear 

differential equations which describes a modified Hopfield NN: 

 
( ) ( ) ( )

1

m
j

j ij i
ij

dx E
x a r

dt x
µ µ νφ

=

∂  = − = − + Ψ ∂  
∑

X
, (7) 

where the training rate µ is guessed as some positive number, 
( )

j

g

x
φ

∂
=

∂
X

 are 

activation functions of the output neurons, ( ) ( )i
i

i

p r
r

r

∂
Ψ =

∂
 are activation func-

tions of the input neurons, t is time. 

The calculations of Chichocki et al. [21] show that NN’s of this type can re-

construct such model images as, e.g. Shepp-Logan phantom [22] modeling a 

section of a human head and frequently used for testing the reconstruction to-

mography methods. Fig. 3 depicts the results of the reconstruction of a model 

image obtained by means of a modified Hopfield NN [21]. 
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Afterwards, Wang and Wahl [23] proposed an improvement of the above ap-

proach on the basis of vector-enthropy optimization. They advanced the idea of 

using a linear combination of image enthropy, a function of standard deviation 

between original and reconstructed data, as an objective function g. This prob-

lem is also solved by the authors by means of a modified Hopfield NN. Com-

parison of reconstructed patterns made in Ref. [23] with the results obtained by 

the convolution method and algebraic reconstruction technique shows the ad-

vantage of the proposed NN approach. 

The linear problems of reconstruction tomography can also be solved by 

means of perceptron NN’s. For example Ali et al. [24,25] utilized the perceptron 

with nonlinear hidden layer the activation function of which was chosen in the 

form of a sigmoid. The training was done on computer-modeled measurements 

by means of error back propagation and simulated annealing. The authors dem-

onstrated that the result of the NN model test data reconstruction is more accu-

rate than the one obtained by algebraic methods. 

APPLICATION OF NN’S TO RECONSTRUCTION OF RADIO-

FREQUENCY ELECTROMAGNETIC TOMOGRAPHY DATA 

The radio-frequency electromagnetic tomography is a method of acquiring in-

formation about the distribution of electromagnetic parameters (electrical im-

pedance, conductivity or capacitance, magnetic induction) inside a certain ob-

ject. The electrical impedance tomography (EIT) is most frequently used, for ex-

ample, in medicine, for the study of complex liquid/gas pipe flows, in geophys-

ics, etc. This type of tomography utilizes a system of electrodes mounted around 

an investigated object. This system enables us to measure the resistance between 

two electrodes pairwise. The reconstruction of the studied parameter distribution 

is a complex nonlinear problem which is solved with modified methods of solv-

ing of linear problems of computerized tomography [26,27] or, otherwise, with 

the development of specific methods [28]. As far back as early 1990s the appli-

cation of NN’s to solving this problem was advanced. Initially a simple NN of 
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ADALINE type was used but the reconstruction was rather crude [29]. Later, 

Nooralahiyan and Hoyle applied NN of perceptron type with one hidden layer to 

the reconstruction and simultaneous classification of three-component flows in-

side circular perimeter pipes [30]. The authors chose double-sigmoid as an acti-

vation function of the hidden layer. This method of the reconstruction of the 

flow fraction distribution and classification provided for simplifying the NN 

structure. 

Afterwards, this approach was applied to the reconstruction of three-

component flows studied with an experimental setup [31]. Examples of original 

and reconstructed flow sections are showed in Fig. 4. 

The authors of Refs. [32,33] used perceptron in the algorithms of the simu-

lated electrical impedance image reconstruction. These NN’s have linear [32] or 

nonlinear [33] hidden layers with few inputs and outputs for the reconstruction 

of image segments. The use of this approach allowed the authors to significantly 

reduce requirements to computational power but this lowered the generalization 

capabilities of NN’s. 

A more complex problem of the electrical impedance distribution reconstruc-

tion obtained in medical surveys of patients was solved by Korjenevsky [34]. 

For this purpose he also applied two types of NN’s: the two-layer linear NN and 

the perceptron described by equations (1), (2), in which of the neurons number 

of second layer was 60 and the number of neurons in the first layer was chosen 

to be equal to the quantity of input measurements; hyperbolic tangent was used 

as the activation function. 

The sets of training patterns of about 1.5-2 thousand known distributions were 

used for training. The noise signal was added into learning patterns, the value of 

it being on the order of 1% of maximal input signal level. The author was util-

ized the error back propagation using conjugate gradient optimization. 

Korjenevsky [34] also applied the proposed NN technique to solving of an in-

verse problem arising in magnetic induction tomography which uses the meas-

urement of the magnetic field perturbations caused by eddy currents and allows 
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finding the distribution of electrical conductivity in a specimen. This problem is 

similar to the inverse problem occurring in EIT. 

The results of the reconstruction of randomly generated model distributions by 

the NN with nonlinear hidden layer are quite satisfactory (Fig. 5). The linear NN 

reconstructs the test distribution with lower accuracy than in the case of nonlin-

ear NN or back projection technique with synthesis of reference data. The at-

tempts to reconstruct experimentally obtained distributions of electrical conduc-

tivity by nonlinear NN trained by means of randomly generated model distribu-

tions did not yield any satisfactory result. The author also pointed of the defi-

ciency of NN use — the necessity to create large amount of training patterns. 

Besides the algorithms based on gradient optimization training the Bayesian 

approach can be applied [35]. This method allows more effective training of NN 

solving the inverse problem of EIT but it requires prior information about the 

distribution being reconstructed. Vehtari and Lampinen showed [36] that a NN 

trained with a Bayesian algorithm more accurately than with gradient optimiza-

tion one, reconstructs the modeled distributions representing gas bubble forma-

tion inside a pipe with liquid (two-component medium). 

Warsito and Fan applied the technique worked out on the basis of modified 

Hopfield network [23] to the image reconstruction for flow systems of media 

consisting of various states: gaseous, liquid, solid [37,38]. The authors selected 

the superposition of negative image enthropy, weighted square error function be-

tween measured and estimated data and sum of non-uniformity and peakedness 

functions as an objective function for the optimization. Warsito and Fan recon-

structed real data obtained with an experimental setup. They showed that the test 

flow sections were reconstructed more accurately by the NN than by means of a 

linear back projection or simultaneous image reconstruction technique [39]. 

APPLICATION OF NN’S TO DATA RECONSTRUCTION OF FIBER -

OPTIC TOMOGRAPHY 

The fiber-optic tomography is the method of the information reconstruction 



I.V. Denisov, Yu.N. Kulchin, A.V. Panov, N.A. Rybalchenko. — Optical Memory & Neural Networks, 2005, 14 (1), pp. 45–58 

 12

of physical field parameters (temperature, deformation, impact detection, etc.) of 

data obtained from fiber-optic measuring line arrays. Such lines are stacked un-

der the required scanning scheme on the investigated areas and form a fiber-

optic sensor array [40]. The fiber-optic sensor array, light beam detectors and 

devices processing obtained information form fiber-optic sensor system. The op-

tical signals on the output of measuring lines form data array, which contains the 

information on parameters of physical fields. Real-time processing mutable op-

tical signals from all fiber-optic measuring lines of the system is extremely im-

portant. Fiber-optic measuring systems have variety of exclusive advantages. It 

is connected to widely known features of fiber-optic element base in comparison 

with devices on the basis of other elements: wide bandwidth of optical fiber, its 

insensitivity to electromagnetic noise, small weight, complexity of realization of 

the illegal access to optical information and other characteristics of fiber [41,42]. 

Refs. [43–45] show results of studied distribution reconstruction by means of 

linear perceptrons. Training of the NN and reconstruction of test images was 

made for smooth distributions. The authors used the modification delta-rule of 

elements of the matrix of connections wij for training: 

 ( )ij i j jw x y yε∆ = − ɶ , (8) 

where ε is the parameter specifying training rate, xi is the state of ith neuron of 

the input layer, jyɶ  are values of outputs of NN for the training pattern. Kulchin 

et al. [44,46] found expression for optimal value of ε for linear perceptrons. 

Fig. 6 depicts results of reconstruction of the simulated test image of the array of 

8 8×  measuring lines [43]. For this purpose the two-layer perceptron NN with 

31 input and 64 output neurons was modeled. The NN formed the matrix of 

connections for fiber-optic measuring system being capable to reconstruct the 

distribution of investigated physical field. Formation of the matrix of connec-

tions has demanded 22500 cycles at 32 training pairs. 

Afterwards, Kulchin et al. [45] using above-mentioned simulation represent 

NN implemented as a set of amplitude holograms recorded on disk holographic 
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carrier. The NN was intended for processing output data from distributed fiber-

optic measuring system. It is experimentally shown, that this system allows to 

reconstruct functions of spatial distribution of the studied physical parameter in 

a certain point with the error not exceeding 20%. 

Later, the model of three-layer perceptron with one nonlinear hidden layer 

was used for solving the tomographic problem [47–49]. Transition to such type 

of NN allowed to restore more complex distributions of the investigated field, 

e.g. peaks in a form of Gaussian distribution being more close to practice. So, 

Kulchin et al. [50] made the mock-up of the fiber-optical sensor system detect-

ing the field of acoustic fluctuations. A sketch of this mock-up with the array 

size 4 4×  is shown in Fig. 7. 

The NN, used in Refs. [47–49], reconstructing the data obtained by the 

mock-up of the interferometric fiber-optic sensor system [50], was described by 

the equations (1), (2); with hyperbolic tangent being an activation function. For 

the sensor array shown in Fig. 7, the input and hidden layers contained 4 1n −  

neurons being equal to number of fiber-optic measuring lines, and the third out-

put layer contained n n×  neurons, corresponding the number of sites of the 

measuring system. The NN could not have threshold potentials, in that case it 

was considered that 0jθ ≡  and 0iθ ≡ . 

The reconstruction accuracy of the investigated physical field distribution 

was defined by quality of NN training. The deviation between original and re-

stored by NN distributions was defined by expression: 

 ( )2

,

1

2 i i
i

D y yµ µ

µ
= −∑ ɶ , (9) 

where µ is the number of pair of input and output vectors from training page, iyµ
ɶ  

is the required state of the output neuron. The combination of gradient methods 

and elements of simulated annealing made available effective NN training. The 

training process stopped after a certain count of objective function D iterations 

being on order of several millions. Fig. 8 shows results of NN reconstruction of 
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the acoustic oscillations field studied by the mock-up of fiber-optic sensor sys-

tem [48]. 

Kamenev et al. [49] added noise into learning patterns in order to more effec-

tively train NN. This noise simulated random errors arising from measurements, 

the limited accuracy of sensors, etc. For this purpose the set of training patterns 

was increased in three times due to addition of the vectors formed as follows: 

 ( ),noise 1i iy yµ µ η= +ɶ ɶ , (10) 

where ,noiseiyµ
ɶ  is the training pattern with noise addition, η is the random number 

from the interval [ ],ε ε− , ε  is “noise intensity”. The authors in detail investi-

gated influence of “noise intensity” on rate and quality of perceptron training, 

and also on accuracy of reconstruction of test distributions. 

Existence of both positive and negative aspects of NN’s encourages research-

ers to combine various NN’s with as well other mathematical algorithms as 

among themselves to obtain new highly effective computing algorithms. So, 

Kulchin et al. [51] presented promising algorithm on the basis of the combina-

tion of algebraic methods carrying out preliminary processing of information 

which is then fed onto perceptron NN. This NN had 31 neuron in the input and 

64 neuron in the output layers. 

Tu and Huang [52] advanced two new combined NN methods of data proc-

essing defining coordinates and values of external deformation. This methods 

combine perceptron with one hidden layer and Kohonen NN [53]. The authors 

using numerical experiment showed that application of Kohonen NN to solving 

the problem of localization of impact position on fiber-optic sensing array of 

lines of size 4 × 4 in the combination with nonlinear perceptron allows to reach 

the error of mismatch 10-6 in estimation of magnitude of external impact using 

less than 8000 training cycles. The result obtained by the authors allowed to use 

Kohonen NN for localization of position of impacts in fiber-optic tomographic 

problem. 
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OTHER TYPES OF TOMOGRAPHIC PROBLEMS 

The studies of NN application to the restoration of tomographic data are not 

restricted to the afore mentioned problems. One more area of NN application in 

tomography is the reconstruction of data obtained with the help of single photon 

emission computerized tomography (SPECT) and positron emission tomography 

(PET). Both types are frequently utilized in medicine and are based on the detec-

tion of collimated γ-radiation. In the case of PET, two photons are detected 

which are emitted in opposite directions resulting from annihilation of positrons 

arising from β+-decay of the isotopes introduced into the patient blood. For sin-

gle photon emission computerized tomography the isotopes with β−-decay and 

simultaneous emission of γ-quanta are utilized. PET uses more short-living iso-

topes which provide for higher space and time resolution but, because of the fast 

decay, these isotopes must be prepared by means of cyclotron just before the 

survey. With the use of these methods a linear tomographic problem arises 

which is usually solved by the filtered back projection technique. But this algo-

rithm may not give acceptable reconstruction quality, at that, this technique may 

not reconstruct the image in real-time. 

Comtat and Morel [54] applied a self-organizing Kohonen NN to the recon-

struction of data obtained from the PET simulation. Although the data recon-

struction accuracy was lower than in the case of filtered back projection tech-

nique the authors indicate the independence of the used NN approach on the 

number of utilized sensors which is important for universality of the computa-

tional algorithms. 

The utilization of the perceptron appeared to be more productive for solving 

this tomographic problem [55–58]. Kerr and Bartlet [52] used for reconstruction 

of SPECT data the perceptron with nonlinear layer implemented on the basis of 

a massively parallel SIMD computer (SIMD means single instruction, multiple 

data). This computer consists of a large number of simple processors intercon-

nected into an array (Kerr and Bartlet used the array of 64 × 64 processors) con-
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trolled by a more powerful processor. This type of computer has the property of 

working in parallel. Each processor of this SIMD computer performed the role 

of a separate neuron. The use of this parallel system allowed the authors to attain 

fast training of NN. The authors showed that the trained NN is capable of rather 

correct visualizing test images of organs. Moreover, Kerr and Bartlet indicated 

that the NN trained on SIMD computer can subsequently be used on an ordinary 

computer. Bevilacqua et al. [59] used the same approach to training by means of 

a SIMD computer, but with the utilization of the MADALINE NN, a two-layer 

linear perceptron, for the restoration of the PET data. 

Rodriguez et al. [56] showed that the NN, trained with test patterns in the form 

of Gaussian distributions is capable of reconstructing images of phantoms of a 

human head section and of letters.  

We should also note the studies on the application of NN’s to the reconstruc-

tion of ultrasonic tomography data. Hutchins et al. [60] applied a multilayer per-

ceptron to the restoration of simulated and experimental data of a 4 × 4 pixel ar-

ray. NN proved to be able to locate the presence of defect in the area being in-

vestigated; however, the obtained localization was very approximate, that might 

be due to the limited computational capacities insufficient for training an NN. 

CONCLUSIONS 

As follows from the above, NN’s can be used for solving the inverse problems 

of tomography. As a rule, for solving these types of problems it is effective to 

use NN’s of two types: the Hopfield network and the perceptron. The merits of 

the perceptron use for the solution of reconstruction tomography problems in-

clude high rate of data processing, ability of generalization, the simple network 

structure, which can be produced on the basis of both electronic and optical ele-

ments. The deficiencies of these NN’s are the necessity of using a large quantity 

of training patterns and the high duration of the training process. It should be 

noted that if the simultaneous classification of processed data is required, then 

this task can also be solved by means of a perceptron. However, the methods se-
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lection of the training patterns and combining this NN with other computational 

algorithms call for further study. 

The Hopfield networks are usually used for the solution of linear tomographic 

problems. The merit of this class of NN’s is the absence of the need of using the 

large number of training patterns, the deficiencies are: limited possibilities of 

generalization and difficulty of realization in the form of an optoelectronic NN. 

We should acknowledge the advantages of optical methods of NN’s implemen-

tation solving the tomographic problem, in particular, with the aid of the holo-

grams [45], based on the results of works [61,62], and also the realization of 

perceptron in the form of collected optical neurochips, built on the basis of pla-

nar waveguides and prisms [63], which permit parallel processing of integral 

data. 
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FIGURE CAPTIONS 

Fig. 1. Schematic diagram of a three-layer perceptron neural network. 

Fig. 2. Hopfield neural network with two layers. 

Fig. 3. Reconstructed by the NN [21] Shepp-Logan phantom image. (a) squared 

relationship ( )g x  in formula (6), (b) ( )g x  is negative Shannon entropy (5). 

Fig. 4. Results of reconstruction of experimental data of electrical impedance 

tomography [31]. On the right of figure original data are shown, the left part de-

picts NN reconstruction. Different gradations correspond to various components 

of studied mixture. 

Fig. 5. Results of EIT visualization of simulated electrical conductivity distribu-

tions by the perceptron with nonlinear hidden layer [34]. On the left part of the 

figure original data are displayed, on the right of the figure the results of NN 

reconstruction are depicted.  

Fig. 6. The original distribution (a) and result of its reconstruction by two-layer 

perceptron with linear activation function (b) [43]. 

Fig. 7. The architecture of fiber-optic sensor system. 

Fig. 8. The original (a) and reconstructed by the NN (b) acoustic field distribu-

tion [48]. The original distribution was detected with the mock-up of the inter-

ferometric fiber-optic measuring system with sizes 4 × 4 [50]. The dots on base 

plane depict isolines. 
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Fig. 3. Reconstructed by the NN [21] Shepp-Logan phantom image. (a) squared 

relationship ( )g x  in formula (6), (b) ( )g x  is negative Shannon entropy (5). 
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Fig. 4. Results of reconstruction of experimental data of electrical impedance 

tomography [31]. On the right of figure original data are shown, the left part de-

picts NN reconstruction. Different gradations correspond to various components 

of studied mixture. 
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Fig. 5. Results of EIT visualization of simulated electrical conductivity distribu-

tions by the perceptron with nonlinear hidden layer [34]. On the left part of the 

figure original data are displayed, on the right of the figure the results of NN re-

construction are depicted.  
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Fig. 6. 
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(b) 

Fig. 6. The original distribution (a) and result of its reconstruction by two-layer 

perceptron with linear activation function (b) [43]. 
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Fig. 7. The architecture of fiber-optic sensor system. 
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Fig. 8. The original (a) and reconstructed by the NN (b) acoustic field distribu-

tion [48]. The original distribution was detected with the mock-up of the inter-

ferometric fiber-optic measuring system with sizes 4 × 4 [50]. The dots on base 

plane depict isolines. 

 

 


