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ABSTRACT 

 

We developed a method of output signal processing for distributed fiber-optical measuring 

systems. This method is based on neural-like principles of data processing. A mathematical 

model of the three-layered perceptron was used to reconstruct the physical field distribution 

measured by a distributed interferometric system. We proposed an algorithm that is based on 

the committee method of recognition of the dynamic object detected by a fiber-optic measur-

ing system. 
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INTRODUCTION 

The study of natural and simulated physical objects and fields, distributed in great areas, 

require the use of an informational-measuring system in which data gathering is carried out by 

means of a distributed measuring system. A highly promising type of measuring system is the 

distributed fiber-optical measuring system [1]. It consists of a set of distributed fiber-optical 

measuring lines, which sensors detect exterior physical actions in an area. Output signals of 

such an interoferometric system are formed by tomographic principles of data gathering. The 

intensity of light transmitted through a fiber-optic measuring line and that is detected is pro-

portional to the integral action of a physical field on the sensors of this line [2]. Thus the opti-

cal signals on outputs of measuring lines contain the information on the parameters of the 

physical field explored. The tomographic output data of a measuring system represent the 

multivariate arrays of the rapidly varying analog information. The problem of creating high-

speed computers is real for data processing in real time. 
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The use of conventional digital computers for these purposes is limited to their informa-

tion capacity, processing speed and other restrictions, bound with a serial principle of data 

processing. The application of neural networks has significantly increased the speed of tomo-

graphic data processing. Moreover the adaptivity of neural networks allows us to obtain im-

munity in a processing system to changes of input data called environmental influence. Thus 

the application of the neural-like processors effectively allows us to reconstruct the physical 

field distributions measured by a fiber-optic distributed system. 

If measurements are carried out with the sensors which have a linear system performance, 

to reconstruct a desired distribution function, it is enough to use a two-layered linear percep-

tron, in which learning is carried out using a method of error back-propagation. The two-

layered perceptron can be realized on the basis of optics [2] or as a program for a personal 

computer [3]. 

Unfortunately, the measurements usually have errors of the same order of neural network 

reconstruction and fiber-optic interferometric sensors perform as a nonlinear system. Both 

these both factors lead to an error of reconstruction of a distribution function being required 

[4]. So it is necessary to develop new principles of data processing utilizing a nonlinear ana-

log neural network with more than two layers. 

The information reconstructed by a neural network can be used for object attribute infor-

mation system definition. The observed object class can be determined in the case of building 

a recognition algorithm. Thus one can obtain an informational-measuring system registering 

object quite accurately, describing its behavior and classifying it. 

The problem of selection of the information attribute systems and their definition can be 

solved on the basis of analysis of distribution of the physical field detected by a fiber-optic 

measuring system. The problem of discriminant analysis can be solved by a committee 

method [5]. 

The committee method in this problem can be quite simply realized and can quickly di-

vide numerous objects into classes due to a simple logic of committee construction design 

proposed. At this stage, it is not important to divide the registered objects into patterns of 

some permissible set by means of teaching on the basis of a known teaching pattern, but on 

the contrary, it is essential to treat the problem on the other side and for known images to real-

ize the process of reference of any object in one of them. Such an approach to the solution of 

the problem allows us to build an algorithm and implement it as a computer program. 
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DATA PROCESSING BY NEURAL NETWORK 

If the fiber-optic distributed measuring system [6] gathers data through a tomographic 

method, then it might have the architecture shown in Fig. 1. The measuring network consists 

of the measuring lines stacked along three directions. So this network forms a square lattice. 

Figure 1 shows the architecture of the measuring system with configuration 4 × 4. If a physi-

cal field explored does not act on all the measuring lines but only on some sensors then output 

signals of the measuring system x1 … x15 contain the information on values of the field pa-

rameters y1 … y16 at places where three lines are intercrossed.  

The output tomographic data of the measuring system are determined by expressions: 
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where f is nonlinear transfer function defined by the principle of operation of a measuring 

line, sk is the corresponding sum of parameters explored yi.  

The problem of finding of the solution yi is incorrect because the number of equations is 

less than quantity of parameter values reconstructed. This tomographic problem is tradition-

ally solved by iterative methods. When function f is linear the neural network such as a two-

layered perceptron can be used to solve this problem [2,3]. However, if the measuring lines 

are single-fiber low-mode interferometers then  

 f (ζ) = A + B cos (C⋅ζ), (1) 

where A, B, C are constants, ζ is the sum of yi along a line. This function f (ζ) can be ap-

proximated by linear dependence within a certain range of ζ. So in this work, we chose the 

perceptron with the nonlinear hidden layer since such networks have universal approximation 

capability [7,8]. A three-layered perceptron allows to solve tomography problem for function 

(1) and so it can be used to process output signals of distributed fiber-optic measuring sys-

tems. 

The architecture of three-layered neural network is shown in Fig. 2. The neurons of the 

first layer serve as network inputs and feed data from the measuring system to the next layer. 

In order to reconstruct a physical field distribution from the area n × n, where n is the size of 

the lattice, the first layer should contain 4n − 1 neurons. In this paper, we suppose that the 

known scheme of stacking of fiber-optic lines on three directions is applied (see Fig. 1).  
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In this case, each neuron of input layer corresponds to the certain fiber-optic measuring 

line and output potential of this neuron xk is proportional to intensity of light detected. The 

second (hidden) layer processes the following non-linear transformation: 
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where xk are states of neuron inputs being signals from measuring lines, sj are states of outputs 

and jkw  are synapses. The second layer contains n2 neurons and the matrix of connections w  

has n2(4n − 1) elements. 

The output layer of the neurons takes the linear transformation: 
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where yi are states of third layer neuron outputs, wij are synapses of third layer. This layer 

consists of n2 neurons so the matrix of connections w has n4 elements. The accuracy of the 

physical field distribution reconstruction is determined by the neural network training error 

(objective function). The following expression was used as an objective function: 

 ( )2

,
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µ
= −∑ ɶ , (4) 

where µ is superscript indicating number of learning pattern, iyɶ  are output states of the neural 

network for some learning pattern. The learning patterns iyµ
ɶ  have a peak-alike or smooth dis-

tributions on the surface, and were randomly generated by numerical modeling or obtained 

from experimental data. For each training pattern iyµ
ɶ  are proportional to the parameter of the 

field investigated and ixµ
ɶ  are proportional to the integral signal measured. In Eq. (4) yi are 

calculated by the expression:  

 tanhi ij jk k
j k

y w w xµ µ =  
 

∑ ∑ ɶ . 

We used error back-propagation for the network training, so we had to minimize D with 

respect to N = n4 + n2(4n − 1) dimensional vector ωωωω = { jkw , wij}. We utilized Broyden-

Fletcher-Goldfarb-Shanno (BFGS) method to minimize the object function since this gradient 

method is rather simple and fast.  

The multidimensional surface of the objective function is complex and the gradient mini-
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mization procedure may stick at a local minimum or valley. So we applied the “jog of 

weights” technique between the series of the gradient optimization in order to avoid local 

minima of D. The “jog of weights” means the random addition ∼ 0.1ωi to the each component 

of ωωωω. The length of these series was usually chosen as 20000 iterations of the minimized func-

tion. We utilized the randomly generated set of ωi, 1,i N= …  as the initial vector for the op-

timization. The minimization procedure was completed after a certain iteration count, typi-

cally several hours of computations on the Pentium III 800 MHz processor. 

Examples of distributions modeled with different n reconstructed by the neural network 

and initially unknown to it are shown in Figs. 3 and 4. The neural networks were learned in-

dependently in all the cases with the similar randomly generated patterns. In this simulation, 

we suggested that each sensor had a randomly generated but permanent weight in range 0.5–

1, i. e. the sensibility of modeled sensors varied. The number of the training patterns in this 

simulation was about 100. One can see from Figs. 3 and 4 that the neural network sufficiently 

accurately reconstructs an unknown pattern and can be used in practice.  

Next we utilized our neural network for reconstruction of experimental data from the 

mock-up of the fiber-optic system measuring the field of acoustic oscillations [6]. In this ex-

periment the each iyɶ  was proportional to the amplitude of the speaker acoustical oscillation. 

Figure 5 shows original (a) and reconstructed by the neural network (b) acoustic field 

distributions. This pattern was absent in the set of training patterns. We utilized 31 learning 

patterns to train this neural network. One can see from Fig. 5 that the neural network rather 

accurately reconstructs the unknown distribution. The form of the distributions was 

reconstructed exactly and the values have errors of about 20%. The errors were mainly 

introduced by the noise in the measuring lines. 

PATTERN RECOGNITION USING COMMITTEE METHOD 

Now when the data measured is reconstructed, we can proceed to information recognition. 

The information about the number of peaks, the intensity of a peak, its variance and the veloc-

ity of its movement along with other attributes can be extracted from a field distribution re-

constructed by a neural network.  

Let the set M consist of elements which can be called permissible objects and exist as vec-

tors in space nℜ . Let nM ∈ℜ . We can refer to M as a permissible set. Let 1 2, , , mM M M…  

exist and for them we have 

 1 2 mM M M M= ∪ ∪ ∪… , i jM M∩ = ∅ , i j≠ . (5) 
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In general, the solution of the problem of discriminant analysis has two steps:  

1) the algorithm is made and possible set is divided into patterns using teaching pattern 

Mɶ ( )i iM M M∩ = ≠ ∅ɶ ɶ ;  

2) assuming classification of the cM  elements set is known, the algorithms are applied to 

object set cM  ( cM  is a control pattern { }1 2, ,....,c kM c c c=  for which cM M∩ = ∅ɶ  is per-

formed) and recognition quality is checked. 

Since information attributes are determined on the basis of distribution analysis of the 

value characterizing the physical field and images are assumed to be known ones we use an-

other approach: 1) the algorithm is built which refers objects to the known images; 2) the rec-

ognition quality is tested by means of control pattern cM . 

Description of the recognition algorithm  

Consider the recognition algorithm in detail for object of recognition 

1 2, , ,c c c
k k k knx x x =  c … , n is number of the object attributes, kc M∈ , 1 k q≤ ≤ , k Z∈ and for 

∀ q  (q is the number of the control objects). Let the sets 1M , 2M ,…, mM  satisfying Eq. (5) be 

the classes of object recognition.  

Assume vectors 1X , 2X ,…, mX  of sets 1M , 2M ,…, mM  are centers of classes and 

1D , 2D ,…, mD  are corresponding ranges of variation of the attributes : 

1 1 1
1 1 2, , , nx x x =  X … , 2 2 2

2 1 2, , , nx x x =  X … , …, 1 2, , ,m m m
m nx x x =  X … , 

1 1M∈X , 2 2M∈X , …, m mM∈X ; 

1 1 1
1 1 2, , , nd d d =  D … , 2 2 2

2 1 2, , , nd d d =  D … ,…, 1 2, , ,m m m
m nd d d =  D … . 

Define 1
kR = 1 1 1

1 2, , ,k k knr r r  … , 2
kR = 2 2 2

1 2, , ,k k knr r r  … , …, m
kR = 1 2, , ,m m m

k k knr r r  … , where each com-

ponent of these vectors for 1 l n≤ ≤ , l Z∈ ; 1 k q≤ ≤ , k Z∈  is given by formula: 

 i i c
kl l klr x x= − , 1 ,i m i Z≤ ≤ ∈ . (6) 

Then let us compare given i
klr  with i

ld  correspondingly on the rule: 

 ( ) 1, if ;

0, if .

i i
l i kl l
Ak kl i i
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r d
x

r d
β
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After determining the coordinates of the information vector 1 2, ,...., n
Ak Ak Ak Akβ β β =  β  the in-

formation vector Aα  is formed for kс  as follows: 
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Test the condition:  

 ( ) 1

1
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2
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2

n
l
Ak

li
Ak k n

l
Ak

l

n

n

β
α

β

=

=

 >
= 
 ≤


∑

∑
c  (8) 

Under this condition, if more than 
2

n
 attributes of instance object correspond to one of set 

iM , then this object belongs to this set. 

Then the information vector Akα  of the kс object for m classes is defined by the formula:  

 ( ) ( ) ( )1 2, , , m
Ak A k A k A kα α α =  α c c c… , 

where ( )i
Ak kα c { }0,1∈ . After calculation one can conclude that: 

 
( )
( )

if 1, then ;

if 0, then .

i
A k k i
i
A k k i

M

M

α
α

= ∈
= ∉

c c

c c
 (9) 

The program implementing this algorithm was realized, the results of 2 pattern separation 

between two classes ( 2m = ) with six information attributes of the object ( 6n = ) are shown 

in Table 1. 

CONCLUSIONS 

In this paper, we developed a method of output signal processing for distributed fiber-

optical measuring systems. This method is based on the application of a three-layered percep-

tron. A mathematical model of the perceptron was realized as a computer program. The pro-

gram was used to reconstruct a physical field distribution measured by a fiber-optic distrib-

uted system. We showed that the neural network successfully solved the tomographic prob-

lem. The algorithm that used the committee decision method and which recognized the infor-

mation detected by the measuring system and was reconstructed by the perceptron was pro-

posed. 
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FIGURES 
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Fig.1. Architecture of the distributed measuring network with configuration 4 × 4. 
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Fig. 2. Schematic diagram of a three-layered neural network. 
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(a) 

 

 

(b) 

 

Fig. 3. The original (a) and reconstructed by the neural network (b) distributions of the mod-

eled physical field with 5n = . 

 

(a) 

 

 

(b) 

 

Fig. 4. The original (a) and reconstructed by the neural network (b) distributions of modeled 

physical field with 10n = . 
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(a) 

 

(b) 

Fig. 5. The original (a) and reconstructed by the neural network (b) unknown acoustic field 

distribution. The original distribution was detected with the mock-up of the interferometric fi-

ber-optic measuring system [6]. 

TABLE 

 

Table 1. An example of the separation of two patterns c1 and c2 between two sets M1 and M2. 

1
lx  and 2

lx  are the coordinates of class centers, 1
ld  and 2

ld  are coordinates of class ranges, 1
1lr , 

1
2lr , 2

1lr  and 2
2lr  are components of distances from class centers computed, ( )l

Ai kβ c  are infor-

mation vectors. 

l c1 c1 
1
lx  1

ld  1
1lr  ( )1 1

l
Aβ c  1

2lr  ( )1 2
l
Aβ c  2

lx  2
ld  2

1lr  ( )2 1
l
Aβ c  2

2lr  ( )1 2
l
Aβ c  

1 1.0 2.0 1.0 0.0 0.0 1 1.0 0 2.0 0.0 1.0 0 0.0 1 

2 0 0.48 0 0 0.0 1 0.48 0 0.50 0.05 0.5 0 0.02 1 

3 50.0 40.0 45.0 5.0 5.0 1 5.0 1 50.0 5.0 0.0  1 10.0 0 

4 95.0 205.0 100.0 10.0 5.0 1 105.0 0 200.0 20.0 105.0 0 5.0 1 

5 36.5 23.0 36.0 1.0 0.5 1 13.0 0 22.0 2.0 14.5 0 1.0 1 

6 7000 6800 6700 500.0 300.0 1 100.0 1 7000 500.0 0.0 1 200.0 1 

Decision:  1 1M∈c  2 1M∉c   1 2M∉c  2 2M∈c  

 


