The Physics of Metals and Metallography, Vol. 82, No. 5, 1996, pp. 445-448.

Original Russian Text Copyright © 1996 by Fizika Metallov i Metallovedenie, Afremov, Panov.
English Translation Copyright © 1996 by MAUK Hayxa lInterperiodica Publishing (Russia).

THEORY

OF METALS

Theory of M agnetization of Two-Phase
Super paramagnetic Particles: I1. Modeling
of Magnetization Processes

L.L. Afremov and A. V. Panov

Department of Physics, Far Eastern State University, ul. Sukhanova, Vladivostok, 690000 Russia
Received December 9, 1995

Abstract—A model isbuilt for fine chemically inhomogeneous two-phase ferrimagnetic particles. A techniqueis
developed to calculate the total and remanent magnetizations and the coercivity of superparamagnetic particles.

INTRODUCTION

In the previous paper [1], the interphase magneto-
static interaction is shown to have a strong impact on
the critical fields of magnetization reversal and, conse-
quently, on the metastability of magnetic states in
which agrain existswhen placed in an external field H.
The interaction of such grains in an ensemble should
produce asimilar result, and this may, in the final anal-
ysis, affect the magnetization process.

Quite anumber of authors have dealt with the mag-
netostatic interaction observed in a system of chemi-
cally homogeneous superparamagnetic grains (see, for
example, [2—6]). In our analysis of magnetic interaction
in an ensembl e of chemically inhomogeneous particles,
we will use the random field method [3, 5].

1. THE INTERACTION-FIELD
DISTRIBUTION FUNCTION

Consider an ensemble of N + 1 two-phase particles
scattered at random in a nonmagnetic matrix and inter-
acting as dipoles. Suppose that the particle of interest is
located at the origin of the coordinate system. Given a
volume particle distribution such that we can find a par-
ticlewith amagnetic moment m in each element of vol-
ume dV;, the probability that the projection of the inter-
action field H' onto the direction |, selected by the
applied field H in the interval H', H' + dH" will be
found at the origin is

5[""— Z oi(m;, ri):|dHl,

where ¢, is the projection onto the direction |, of the
field set up by a particle of magnetic moment m; at
point r;. Then thetotal probability of finding thefieldin

theinterval H', H' + dH" will be

W(H)dH' = \%J'é(H'—Zq)i)
N )
x |1 t(m;)dm;dv;,
Il

where (dVi/V)t(m;)dm; is the probability of finding a
particle with amagnetic moment m;, m; + dm; in avol-
ume element dV;, and t(m,) is the particle distribution
function in the specimen over the magnitude and direc-
tion of the magnetic moment m. If the magnetic
moment of the grainisaligned with or against the direc-
tion selected by the applied field, this distribution func-
tion may be expressed in terms of the occupancy of
magnetic states N; (see[1]) as

T(m;)dm; = I{ Ny (H"+ H)d (m —my)3(y;)
+ Ny (H' + H)d(m —m,)3(v:)
+ Ngi(H' + H)d(m; —my)3(y; — ) 2
+ Ny (H' + H)o(m —m,)3(y, —m) }
dy; ' '
X dmiE[W(H )dH',
wherey; isthe angle between the direction of m; and |,
(N3, Ny, N3, Ny) isthe state vector of the ensemble of
two-phase particles; and
m, = 33Q[|sl(1—8) +15€],
m, = a’q[ls(1-¢) - | ]
are the magnetic moments of the corresponding phases.
The characteristic function A(p) = I W (H") exp(ipH")dH',
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which is the Fourier transform of the function W(H"),
takes the form

1 0 _ O
A(p) = \—/NJ'---IeXp%piZdJHUT(mi)dmidVi- ©)

Using the normalization condition r[r (m;)dm; = 1 and

assuming that, with N tending to infinity, the number n
of particles per unit volume remains unchanged (the
approximation of low concentrations), equation (3)
may be recast as

0

Alp) = L

- L-explipg)

N 4
x r(m)dmdvg g
0

c(p) = nIdVJ(l—exp(ip¢))T(m)dm, ©®)

mcosy(1—3coszv)

¢ = 3 (6)
r

wherev isthe angle between |, and the radius vector of
the particle.

Integrationin (5) yields

c(p) = nI[N1|—(m11 P) + Nyl _(m,, p)
+ Nzl (my, p) + Nyl .(my, p) JW(H")dH",

(7
where

_ 4 ipm 2
I,(m, p) = I%a—exp[i?(l—:%cos v)}gdv. (8)

Noting that 1.(m, p) = bm|p|* iamp, whereb=5,a=
413 -N + 41715, and N isthe demagnetizing factor, we
obtain the Cauchy distribution function

W(H")dH' = dH’ : 9

rofh (a0

where the distribution parameter B and the magnetiza-
tion | are defined by a set of equations of the form

B = bCI{(N1+ N3)[ls(1—€) + 15€]
+ (N + Ny)[lg(1—€) — 15[ }W(H")dH',

I = CI{(Nl—Ns)Usl(l—S) + 1 5€]
+ (N =Ny [l (1—€) =1 €]} W(H)dH'".

(10)

(11)
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Here, ¢ = na®q isthe volume concentration of the ferro-
magnetic material.

The above simultaneous equations, taken together
with the relations defining the occupancy vector N (see
equations (17) and (18) in[1]), makeit possible to esti-
mate the Cauchy distribution parameter B and to calcu-
late the magnetization I.

2. MODELING THE MAGNETIZATION
OF AN ENSEMBLE OF NONINTERACTING
PARTICLES

At low particle concentrations (with ¢ tending to
zero), the interaction field distribution function W(H')
tends to &(H"), where d(H') is the Dirac delta function.
Integrating equation (11) yields an expression that
defines the magnetization of an ensemble of identical
noninteracting particles

I'= c[(ls(1—-€) +1€) (N —Ny)
+(1a(1-8) = 128) (N2 = N,) .

Now, we take advantage of the spontaneous magnetiza-
tion I = I{x) and the crystallographic anisotropy k= k(x)
found by experiment in [7] for Co,Zn, _,BasFe,,O, fer-
rites as functions of cobalt concentration x. They can be
linearly interpolated as

[4(X) = (—20x + 385) G,
k(x) = 8.3 -13.3x.

Assume that the first phase is depleted of and the
second is enriched in cobalt, that is, X; < X,.

(12)

2.1. Relaxation Time and Viscous Magnetization
of an Ensemble of Interacting Particles

The three eigenvalues of the transformed transition
matrix W (see [1]) found from the equation det|W —
AE| =0, where E isthe unit matrix, may be interpreted
as the inverse relaxation times 1;. Here, the smallest t
correspondsto the“lifetime” of the maximally unstable
state and the longest relaxation time T, to the most
stable state.

Figure 1a shows calculated curves of the reduced
relaxation time 1, of a stable state (15 = T, fp) for an
ensemble of two-phase particles plotted against the
concentration of Co atomsin thefirst phase. A decrease
in chemical inhomogeneity of the grain (an increase in
X1) isseen to cause adecreasein t,. Thisbehavior of the
relaxationtimeisrelated to adecreasein I(x) and inthe
crystallographic anisotropy constant k(x). An increase
in the volume ¢ of the second phase is seen to be
accompanied by a decrease in 1, because the potential
barriers E; are lowered (see [1, Appendix 1]). There-
fore, the viscous magnetization of chemically homoge-
neous particles (€ = 0) increases faster than does that of
inhomogeneous particles (¢ = 0.2) (see Fig. 1b).
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Fig. 1. Curvesof (a) relaxation timetg and (b) viscous mag-
netization plotted against cobalt concentration x; for an
ensemble of (1) chemically homogeneous particles (€ = 0)
and (2) of chemically inhomogeneous particles (€ = 0.2)
with X, =0.5,a=10nm, andq = 1.5.
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Fig. 3. Hysteresis loops for an ensemble of chemically
homogeneous noninteracting particles (1) and interacting
particles (2) with g = 1.5, a =10 nm, and x; = 0.

2.2. Hysteretic Properties and Remanent
Magnetization of an Ensemble
of Noninteracting Two-Phase Grains

When residing in a superparamagnetic state, fine
particles can exhibit hysteresisonly if thetime elapsing
after the removal of the applied magnetic field H or the
time it takes for the field to fall off to H = O is shorter
than the relaxation time. Naturally, as the grain size
increases, such a situation can arise in the interval of
reasonabl e spans of time (comparable with the observa-
tion time).

Figure 2 shows the coercive force H, and the rema-
nent saturation magnetization I, plotted against the
concentration of the first phase, based on the modeling
of hysteresis loops (see Fig. 3) with equation (12). As
should be expected, an increase in the chemical inho-
mogeneity of the grain is seen to be accompanied by a
decreasein H. and I, which isin turn associated with
adecrease in the relaxation time 1o,
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Fig. 2. Curvesof (a) coerciveforceH. and (b) remanent sat-
uration magnetization |, plotted against cobalt concentration
X1 (@=10nm,x,=0.5,andgq=1.5): (1) e=0and (2) e =0.2.
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Fig. 4. Remanent magnetization |, plotted against the vol-
ume concentration ¢ of two-phase grainsin an ensemble of
noninteracting grains (1) and interacting grains (2) withq= 1.5,
a=10nm, x; =0, X, = 0.5, H = 1000 Oe, and € = 0.2.

3. EFFECT OF INTERACTION
ON THE REMANENT MAGNETIZATION
AND COERCIVITY OF AN ENSEMBLE
OF CHEMICALLY INHOMOGENEOUS
PARTICLES

Before we proceed to analyze the results of mathe-
matical modeling as applied to the magnetization of an
ensemble of interacting two-phase particles, it isworth
noting that the effect of magnetostatic interaction isto
randomize the magnetic moment distribution of parti-
cles. Itis, therefore, natural to expect that in an ensem-
ble of interacting particles the remanent magnetization
should be lower compared to an ensemble of similar
particles where the interaction is neglected. This asser-
tion is illustrated in Fig. 4, which shows calculated
curves of the remanent magnetization |, of noninteract-
ing particles (curve 1) and of interacting particles
(curve 2).

This randomizing effect of the magnetostatic inter-
action brings on a decrease in the coercivity, this
decreasein H, being most significant in an ensembl e of
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Fig. 5. Reduced coercive force Hg inter/ He noninter PIOtted
against volume concentration ¢ for chemically homoge-
neous particles (1) and inhomogeneous particles (2, € = 0.2)
withq=1.5,a=10nm, x; =0, and x, = 0.5.

chemically inhomogeneous particles (Fig. 5) whose
relaxation time is shorter than that of an ensemble of
chemically homogeneous particles.

The proposed model offers an insight into the mag-
netization and magnetic properties of a system of fine
chemically inhomogeneous ferrimagnetic particles.
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