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INTRODUCTION

In the previous paper [1], the interphase magneto-
static interaction is shown to have a strong impact on
the critical fields of magnetization reversal and, conse-
quently, on the metastability of magnetic states in
which a grain exists when placed in an external field 

 

H

 

.
The interaction of such grains in an ensemble should
produce a similar result, and this may, in the final anal-
ysis, affect the magnetization process.

Quite a number of authors have dealt with the mag-
netostatic interaction observed in a system of chemi-
cally homogeneous superparamagnetic grains (see, for
example, [2–6]). In our analysis of magnetic interaction
in an ensemble of chemically inhomogeneous particles,
we will use the random field method [3, 5].

1. THE INTERACTION-FIELD
DISTRIBUTION FUNCTION

Consider an ensemble of 

 

N

 

 + 1 two-phase particles
scattered at random in a nonmagnetic matrix and inter-
acting as dipoles. Suppose that the particle of interest is
located at the origin of the coordinate system. Given a
volume particle distribution such that we can find a par-
ticle with a magnetic moment 

 

m

 

i

 

 in each element of vol-
ume 

 

dV

 

i

 

, the probability that the projection of the inter-
action field 

 

H

 

' onto the direction 

 

l

 

0

 

 selected by the
applied field 

 

H

 

 in the interval 

 

H

 

', 

 

H

 

' + 

 

dH

 

' will be
found at the origin is

where 

 

ϕ

 

i

 

 is the projection onto the direction 

 

l

 

0

 

 of the
field set up by a particle of magnetic moment 

 

m

 

i

 

 at
point 

 

r

 

i

 

. Then the total probability of finding the field in

δ H' ϕ i mi ri,( )
i 1=
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the interval 

 

H

 

', 
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' will be

(1)
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 is the probability of finding a
particle with a magnetic moment 

 

m

 

i

 

, 

 

m

 

i

 

 + 

 

d

 

m

 

i

 

 in a vol-
ume element 

 

dV

 

i

 

, and 

 

τ

 

(

 

m

 

i

 

) is the particle distribution
function in the specimen over the magnitude and direc-
tion of the magnetic moment 

 

m

 

. If the magnetic
moment of the grain is aligned with or against the direc-
tion selected by the applied field, this distribution func-
tion may be expressed in terms of the occupancy of
magnetic states 

 

N

 

i

 

 (see [1]) as

(2)

where 

 

γ

 

i

 

 is the angle between the direction of 

 

m

 

i

 

 and 

 

l

 

0

 

;
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i

 

) is the state vector of the ensemble of
two-phase particles; and

are the magnetic moments of the corresponding phases.

The characteristic function 
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which is the Fourier transform of the function W(H '),
takes the form

(3)

Using the normalization condition (mi)dmi = 1 and

assuming that, with N tending to infinity, the number n
of particles per unit volume remains unchanged (the
approximation of low concentrations), equation (3)
may be recast as

(4)

(5)

(6)

where ν is the angle between l0 and the radius vector of
the particle.

Integration in (5) yields

(7)

where 

(8)

Noting that I±(m, ρ) = bm |ρ| ± iamρ, where b ≈ 5, a =
4π/3 –N + 4π/15, and N is the demagnetizing factor, we
obtain the Cauchy distribution function

(9)

where the distribution parameter B and the magnetiza-
tion I are defined by a set of equations of the form

(10)
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B bc N1 N3+( ) Is1 1 ε–( ) Is2ε+[ ]{∫=
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I c N1 N3–( ) Is1 1 ε–( ) Is2ε+[ ]{∫=
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Here, c = na3q is the volume concentration of the ferro-
magnetic material.

The above simultaneous equations, taken together
with the relations defining the occupancy vector N (see
equations (17) and (18) in [1]), make it possible to esti-
mate the Cauchy distribution parameter B and to calcu-
late the magnetization I.

2. MODELING THE MAGNETIZATION
OF AN ENSEMBLE OF NONINTERACTING 

PARTICLES

At low particle concentrations (with c tending to
zero), the interaction field distribution function W(H')
tends to δ(H'), where δ(H') is the Dirac delta function.
Integrating equation (11) yields an expression that
defines the magnetization of an ensemble of identical
noninteracting particles

(12)

Now, we take advantage of the spontaneous magnetiza-
tion Is = Is(x) and the crystallographic anisotropy k = k(x)
found by experiment in [7] for CoxZn2 – xBa3Fe24O4 fer-
rites as functions of cobalt concentration x. They can be
linearly interpolated as

Is(x) = (–20x + 385) G,

k(x) = 8.3 – 13.3x.

Assume that the first phase is depleted of and the
second is enriched in cobalt, that is, x1 < x2.

2.1. Relaxation Time and Viscous Magnetization
of an Ensemble of Interacting Particles

The three eigenvalues of the transformed transition
matrix W (see [1]) found from the equation det|W –
λE | = 0, where E is the unit matrix, may be interpreted
as the inverse relaxation times τi. Here, the smallest τ
corresponds to the “lifetime” of the maximally unstable
state and the longest relaxation time τmax, to the most
stable state.

Figure 1a shows calculated curves of the reduced
relaxation time τ0 of a stable state (τ0 = τmaxf0) for an
ensemble of two-phase particles plotted against the
concentration of Co atoms in the first phase. A decrease
in chemical inhomogeneity of the grain (an increase in
x1) is seen to cause a decrease in τ0. This behavior of the
relaxation time is related to a decrease in Is(x) and in the
crystallographic anisotropy constant k(x). An increase
in the volume ε of the second phase is seen to be
accompanied by a decrease in τ0 because the potential
barriers Eik are lowered (see [1, Appendix I]). There-
fore, the viscous magnetization of chemically homoge-
neous particles (ε = 0) increases faster than does that of
inhomogeneous particles (ε = 0.2) (see Fig. 1b).

I c Is1 1 ε–( ) Is2ε+( )[ N1 N3–( )=

+ Is1 1 ε–( ) Is2ε–( ) N2 N4–( ) ] .
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2.2. Hysteretic Properties and Remanent
Magnetization of an Ensemble

of Noninteracting Two-Phase Grains

When residing in a superparamagnetic state, fine
particles can exhibit hysteresis only if the time elapsing
after the removal of the applied magnetic field H or the
time it takes for the field to fall off to H = 0 is shorter
than the relaxation time. Naturally, as the grain size
increases, such a situation can arise in the interval of
reasonable spans of time (comparable with the observa-
tion time). 

Figure 2 shows the coercive force Hc and the rema-
nent saturation magnetization Irs plotted against the
concentration of the first phase, based on the modeling
of hysteresis loops (see Fig. 3) with equation (12). As
should be expected, an increase in the chemical inho-
mogeneity of the grain is seen to be accompanied by a
decrease in Hc and Irs, which is in turn associated with
a decrease in the relaxation time τ0.

3. EFFECT OF INTERACTION
ON THE REMANENT MAGNETIZATION
AND COERCIVITY OF AN ENSEMBLE
OF CHEMICALLY INHOMOGENEOUS 

PARTICLES

Before we proceed to analyze the results of mathe-
matical modeling as applied to the magnetization of an
ensemble of interacting two-phase particles, it is worth
noting that the effect of magnetostatic interaction is to
randomize the magnetic moment distribution of parti-
cles. It is, therefore, natural to expect that in an ensem-
ble of interacting particles the remanent magnetization
should be lower compared to an ensemble of similar
particles where the interaction is neglected. This asser-
tion is illustrated in Fig. 4, which shows calculated
curves of the remanent magnetization Ir of noninteract-
ing particles (curve 1) and of interacting particles
(curve 2).

This randomizing effect of the magnetostatic inter-
action brings on a decrease in the coercivity, this
decrease in Hc being most significant in an ensemble of
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Fig. 1. Curves of (a) relaxation time τ0 and (b) viscous mag-
netization plotted against cobalt concentration x1 for an
ensemble of (1) chemically homogeneous particles (ε = 0)
and (2) of chemically inhomogeneous particles (ε = 0.2)
with x2 = 0.5, a = 10 nm, and q = 1.5. 

Fig. 2. Curves of (a) coercive force Hc and (b) remanent sat-
uration magnetization Irs plotted against cobalt concentration
x1 (a = 10 nm, x2 = 0.5, and q = 1.5): (1) ε = 0 and (2) ε = 0.2.

Fig. 3. Hysteresis loops for an ensemble of chemically
homogeneous noninteracting particles (1) and interacting
particles (2) with q = 1.5, a = 10 nm, and x1 = 0.

Fig. 4. Remanent magnetization Ir plotted against the vol-
ume concentration c of two-phase grains in an ensemble of
noninteracting grains (1) and interacting grains (2) with q = 1.5,
a = 10 nm, x1 = 0, x2 = 0.5, H = 1000 Oe, and ε = 0.2.
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chemically inhomogeneous particles (Fig. 5) whose
relaxation time is shorter than that of an ensemble of
chemically homogeneous particles.

The proposed model offers an insight into the mag-
netization and magnetic properties of a system of fine
chemically inhomogeneous ferrimagnetic particles.
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Fig. 5. Reduced coercive force Hc,inter/Hc,noninter plotted
against volume concentration c for chemically homoge-
neous particles (1) and inhomogeneous particles (2, ε = 0.2)
with q = 1.5, a = 10 nm, x1 = 0, and x2 = 0.5. 


