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INTRODUCTION

Lying at the basis of theoretical studies into the
magnetic states of single-domain particles or of those
close in size, the hypothesis that ferromagnetic grains
are single-phase (chemically homogeneous) species is
a simplification rather than a faithful reflection of real-
ity. Depending on the way they are produced, fine par-
ticles can be surface-coated by the oxide of the princi-
pal or any other magnetic element [1–4]. It is likely that
a polyphase magnetic system is formed in a different
way—through the decomposition of solid solution,
which produces adjacent phases, some enriched in and
the others depleted of a magnetic material [5].

It is natural to expect that the chemical inhomogene-
ity of fine particles can significantly affect the stability
of a state in which the magnetic moment is uniformly
distributed and thus change the magnitude of the mag-
netic moment and the critical field of magnetization
reversal.

The stability of the uniformly magnetized state of
particles differing in shape is dealt with in [6–8]. There,
a two-phase quasi-single-domain particle with uniaxial
crystallographic anisotropy is used as a model, the sur-
face layer is assumed to be sufficiently thin, and an ana-
lytical expression is derived for the critical field
required to form a fanlike magnetic structure. It is fur-
ther shown there that the formation of a surface layer
with a low or high anisotropy brings on a change in the
saturation magnetization of the quasi-single-domain
grain. Unfortunately, the technique whereby the critical
field of magnetization reversal is analyzed in the works
cited is able to identify only the ground states corre-
sponding to a given class of magnetic moment distribu-
tion functions. In fact, it leaves out the metastable
states, although it is natural to expect that a two-phase
particle may reside in states where the magnetic
moments of the phases can take on parallel and antipar-
allel orientation. Depending on the relative position of
the phases and by virtue of their interaction, one of the
states, provided it is realizable, must be metastable
even if the magnetic moments of the phases remain

homogeneous. The extension of the spectrum of equi-
librium states must of necessity tell on the way an
ensemble of fine particles is magnetized and on its
magnetic properties. 

This paper is an attempt to investigate the magneti-
zation of an ensemble of chemically inhomogeneous
fine particles by resorting to a simple and easy-to-grasp
model.

1. THE MODEL OF A TWO-PHASE PARTICLE

Consider a particle, that consists of two crystallo-
graphically uniaxial, homogeneously magnetized fer-
romagnetic phases in the shape of a parallelepiped of
base 

 

a

 

2

 

 and height 

 

qa

 

 (Fig. 1). The parameters of the
phases are as follows: 
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 are the spontaneous
magnetizations, 

 

k

 

1

 

 and 

 

k

 

2

 

 are the dimensionless con-
stants of crystallographic anisotropy, and 1 – 

 

ε

 

 and 

 

ε

 

 are
the relative volumes of the first and second phases,
respectively. To simplify matters, we assume that the
transition region is infinitesimally thin, that the vectors
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s

 

1

 

 and 

 

I

 

s

 

2

 

 lie in the 

 

XOZ

 

 plane, and that the axes of
crystallographic anisotropy of both ferromagnets are
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Fig. 1.

 

 Illustrating the model of a two-phase particle.
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aligned parallel to the 

 

Z

 

 axis. The particle is placed in
an external magnetic field 

 

H

 

 directed along the 

 

Z

 

 axis.
We leave out of consideration the exchange and

magnetoelastic interphase interactions. Their consider-
ation is more or less justified only if the magnetic atoms
in the boundary layer are distributed in a strongly ran-
dom manner [9, 10].

In the adopted approximation, the free energy 

 

F

 

 of
the grain placed in the external magnetic field 

 

H

 

 at zero
absolute temperature (

 

T

 

 = 0) may be written as the sum
of the energy of crystallographic anisotropy

(1)

the energy of interaction between the magnetic moment
and the internal magnetic field

(2)

and the energy of interaction between the magnetic
moment and the external magnetic field

(3)

In equation (2), 

 

N

 

ik

 

 are the demagnetizing factors deter-
mined by the shape and relative dimensions of the
phases (see Appendix I).

2. EQUILIBRIUM STATES
OF A TWO-PHASE PARTICLE

By applying the standard procedure to minimize the
free energy 

 

F

 

 = 

 

E

 

a

 

 + 

 

E

 

m

 

 + 

 

E

 

H

 

 in terms of 

 

θ

 

1

 

 and 

 

θ

 

2

 

, we
obtain a system of equations that define the equilibrium
states of the magnetic moments of a grain

(4)

where 
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.

We begin our analysis of solutions to (4) with the
case 

 

H

 

 = 0.

 

2.1. Equilibrium States in the Absence
of an External Field

 

It is an easy matter to see that for 

 

H

 

 = 0 the spectrum
of solutions to (4) consists of three groups, namely,

Ea
1
2
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3
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H
Is2
------ε j

2 θ2sin+ 0,=

(1) sinθ1 = sinθ2 = 0, (2) cosθ1 = cosθ2 = 0, and

(3) cosθ1 = , cosθ2 = ,

where

.

The first group of solutions corresponds to a mini-
mum of F, the second, to a maximum of F, and the third
is not realized with the chosen relative orientation of
the phases because it does not satisfy the extremum
condition.

Thus, in the absence of an external field, a two-
phase particle can reside in one of the states listed
below:

–the first (↑↑ ) state, where the magnetic moments of
both phases are aligned parallel and point along the OZ
direction;

–the second (↑↓ ) state, where the phases are magne-
tized antiparallel and the magnetic moment of the first
phase m1 points in the OZ direction;

–the third (↓↓ ) state, which differs from the first in
that the magnetizations of the phases are aligned anti-
parallel relative to the OZ axis;

–the fourth (↓↑ ) state, where the magnetic moment
of the second phase is aligned with the OZ axis and that
of the first, against it.

The first and third states are metastable because the
free energy of the grain in these states, F(↑↑ ) = F(↓↓ ) =
N21Is1Is2, is greater than in the second and fourth states,
where F(↑↓ ) = F(↓↑ ) = –N21Is1Is2.

2.2. Equilibrium States of a Grain
in an External Magnetic Field

In an external magnetic field H directed along the
OZ axis, all states except the first are metastable, but it
is the third state that is the most unstable. Obviously,
the grain can change from the third state to the second
(↑↓ ), to the fourth (↓↑ ), or to the first (↑↑ ). The first
two transitions imply the rotation of the magnetic
moment of a phase, and the last, the rotation of the
overall moment of the grain. Consider the transition to
the second state. By putting θ2 = π in the first equation
of the system (4), we arrive at two types of solutions

 and (5)

which for H < (a1Is1 – N21Is2)/(1 – ε) determine the
ground state (θ1 = 0), a metastable state (θ1 = π), and the
state in which the free energy F is maximum. For H =
k1Is1 + (2N11Is1 – N21Is2)/(1 – ε) the metastable state dis-
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appears, because with θ1 = π and θ2 = π the free energy
F is maximum. Therefore, we define the field

(6)

as critical, that is, as one that causes a transition from
the third to the second state to take place. Similarly, we
can determine the critical fields for a transition from the
third to the fourth state

(7)

from the third to the first

(8)

from the fourth to the first

(9)

from the second to the first

(10)

and from the second to the fourth

(11)

The critical fields for transitions from the first state to

the third, , and from the fourth to the second,

, are defined by equations (8) and (11), respec-
tively.

2.3. Ground and Metastable States
of a Two-Phase Particle

Equations (6) and (7) suggest that the critical fields
Hc may take on both positive and negative values. A
negative critical field should be construed as implying
the unfeasibility for the particle to reside in the (↑↑ ) or
(↓↓ ) state. Should a particle find itself in one of them,

then at  ≤ 0 it will spontaneously pass from the

(↓↓ ) state to the second or fourth state (  ≤ 0). The
foregoing may be given a simple geometrical interpre-
tation. Let the ensemble consist of particles differing in
phase size ε and phase length-to-width ratio q. Then to
each particle we may assign a point on the {ε, q} phase

plane (see Fig. 2). The curve such that (ε, q) = 0

and (ε, q) = 0 will separate the phase plane into
two parts. The particles whose representative points fall
under the curve can reside only in one of the states
where the magnetic moments of the phases are aligned
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antiparallel, i.e., there is no metastability. The particles
represented by points above the curve can reside in both
the ground and metastable states.

Quite clearly, the metastability depends on the rela-
tive strength of the interphase magnetostatic interaction
and the interaction of spin magnetic moments with the
crystal field. As the grain length-to-width ratio q
increases, the strength of the interphase magnetostatic
interaction decreases, and this enhances the role of
the  crystallographic anisotropy that governs both the
parallel and antiparallel alignment of phase magnetiza-
tions to the same extent.

The foregoing investigation of the equilibrium
states in which a two-phase particle can exist provides
a good stepping stone toward a study of an ensemble of
such particles.

3. THE STATE DISTRIBUTION
OF TWO-PHASE PARTICLES

Consider an ensemble of identical noninteracting
two-phase particles placed in an external magnetic field
H at some temperature T. Since the particles are small
in volume, the thermal fluctuations experienced by the
magnetic moments of the phases may be expected to
initiate transitions between states in a field H that is
weaker than any critical field of the spectrum of Hc dis-
cussed above [see (11) through (16)].

3.1. Frequency of Transitions
between Equilibrium States

A chance for the magnetic moment of a phase to
change its alignment is determined by the height of the
potential barrier Eik that separates the ith and kth states.
Proceeding as in [11], we take the frequency of transi-
tions from the ith to the kth state to be expressed in
terms of Eik as 

(12)Wik f 0 Eik– kBT⁄( ),exp=

2.0

0 0.2 0.4 0.6 0.8 1.0
ε

1.5

1.0

0.5

q

Fig. 2. Magnetic state (ε, q) diagram of an ensemble of
CoxZn2 – xBa3Fe24O4 particles. Cobalt concentration in the
first phase, x1 = 0; in the second, x2 = 0.5. 
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where f0 ranging from 107 to 1010 s–1 is the characteris-
tic frequency of attempts to overcome the potential bar-
rier, kB is Boltzmann’s constant, Eik = Fk max – Fi min,
where Fi min is the free energy of the equilibrium state
in which the particle resided prior to the transition, and
Fk max is the maximum free energy that separates the ith

and kth states. For example, with  > 0, we have

(13)

If  ≤ 0, then, as noted earlier, the (↑↑ ) state is
unfeasible, and the problem of finding W12 reduces to
the problem of the random walk of a unit vector over a
sphere, whose solution to a first approximation is W12 =
f0exp(–2HεIs2qa3/kBT). In a similar way, we can calcu-
late Eik for the remaining 11 transitions (see Appendix II)
and, thus, for the frequency Wik.
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2
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-----------------------------------qa

3
.=

Hc2
↑↑( )

3.2. The Equation of “Motion”
for the State Vector and Its Solution

We introduce the occupancy vector normalized to
unity, N(t) = {N1(t), N2(t), N3(t), N4(t)}. If the initial
state n0 = {n1, n2, n3, n4} of an ensemble of two-phase
particles is unstable, then a transition to equilibrium
may be regarded as a discrete-state Markov process,
which is described by a system of four equations

(14)

subject to the initial conditions Ni(t = 0) = ni, i, k =
1, 2, 3, 4.

By using the normalization condition

(15)

and eliminating N4 from (14), we may rewrite it (14) in
matrix notation as

(16)

where
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,=

(17)

It is convenient to write the solution of (16) using the
matrix exponential function (see Appendix III)

(18)

Given the initial state vector n0, equations (17) and (18)
will completely define the occupancy of magnetic
states in an ensemble of two-phase particles.

APPENDIX I
Magnetostatic Energy of a Two-Phase Grain

The magnetostatic energy of a grain may be
regarded as the energy of interaction between magnetic
charges with a surface density

(I.1)

N
N1

N2

N3 
 
 
 
 

, V
W41

W42

W43 
 
 
 
 

.= =

N t( ) Wt( )n0exp W t τ–( )( ) τV.dexp

0

t

∫+=

εm
1
2
---

Is r( )dS( ) Is r'( )dS'( )
r r'–

------------------------------------------------- .

S'

∫
S

∫=

Because the problem is symmetric, we may rewrite it
(I.1) as

(I.2)

where ri are the coordinates of points on the surface Si
(see Fig. 1).

Because the magnetization vector components of
the first and second phases are expressed in terms of
the  direction cosines, Is1 {Is1sinθ1, 0, Is1cosθ1},
Is2 {Is2sinθ2, 0, Is2cosθ2}, it follows that 
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APPENDIX II

Expressions for Energy Barriers

(II.1)

(II.2)
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(II.12)

APPENDIX III

Expression of a Matrix Exponential Function
in Terms of the Transition Matrix

To achieve the task stated in the title of this Appen-
dix, we take advantage of the Sylvester–Lagrange
interpolation polynomial. If the matrix W does not have
multiple roots (λ0 ≠ λ1 ≠ λ2), this polynomial may be
written as 

(III.1)

If W has two multiple roots, say, λ0 ≠ λ1 ≠ λ2, then

(III.2)

where Ψ(λ) = (λ – λ1)(λ – λ2)2 is the minimal polyno-
mial, and
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where
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