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We consider an ensemble of identical semiconductor nanoparticles randomly embedded into dielectric matrix. The
nanoparticles are polarized by the laser irradiation having linear polarization. The contribution of dipole–dipole
interactions to third-order dielectric susceptibility is calculated by usingmean random fieldmethod. It is shown that
this contribution always has a negative sign, and it can be comparable with the values of optical nonlinearity ob-
served experimentally. © 2010 Optical Society of America
OCIS codes: 160.4236, 160.4330, 190.4400, 260.2710, 350.4990.

In recent years there has been considerable interest in
studying optical properties of nanocomposites contain-
ing, in particular, semiconductor particles. Nonlinear op-
tical characteristics of such the systems are enhanced in
comparison with bulk materials. Specifically, nanocom-
posites can be utilized as optical limiters, sensors, light
emitters, etc.
Concentrations of the nanoparticles in the host med-

ium can be as much as tens of percent when the interpar-
ticle coupling effects come into prominence, especially
the dipole–dipole interactions. Existing theories usually
neglect this effect. Some authors numerically treat the
contribution of dipolar interactions to optical properties
of nanocomposites containing metallic particles [1]. This
approach requires much computation and has less gen-
eralization. In this Letter, we make an attempt to close
this gap.
In our model we consider the steady-state ensemble of

identical spherical nanoparticles randomly embedded
into dielectric matrix that are polarized by laser irradia-
tion. The incident light is assumed to have linear polariza-
tion. The particles are thought of as being polarized
dipoles keeping their polarization for a while. We suppose
that the dipole moments have equal magnitudes with two
equiprobable opposite directions. The model suggests
that some number of nanoparticles are polarized with
constant dipole moment at every instant. These approxi-
mations are assumed to be valid for the case of nanocom-
posites containing semiconductor quantum dots [2].
These particles could be excited, and the lifetime of this
state is much larger than the period of optical field altera-
tion. The modeled ensemble can be treated as an Ising
system in this approach.
The absolute value of the induced dipole electric mo-

ment p of a particle in our model is assumed to be pro-
portional to the amplitude of electric field of the incident
irradiation Ein,

p ¼ εmαvEin; ð1Þ
where α is dimensionless polarizability of the particle, v
is its volume, and εm is a dielectric function of matrix.
Dipole moment p may have two opposite randomly se-
lected directions. One can estimate α, using classic

theory, as

α ¼ 3
4π

εp − εm
εp þ 2εm

; ð2Þ

where εp is a dielectric function of the particle.
Further, we calculate the random electric field induced

on the test particle by other polarized particles through
the dipolar interaction. The field of induced dipole of the
lth particle located by radius-vector Rl at test particle is

El ¼
3ðRl · pÞRl − pR2

l

εmR5
l

:

It is known that the probability function of random field
E ¼ P

l El in such a system is Cauchy–Lorentzian or
Gaussian depending on volume concentration c of nano-
particles in the sample [3].

For c → 0 the distribution function over dipolar inter-
action fields E is Cauchy–Lorentzian [3,4]:

WL ¼ BL

πðBL
2 þ E2Þ ; ð3Þ

where

BL ¼ 8π2

9
ffiffiffi
3

p cvαEin: ð4Þ

At higher concentrations for finite particles the distri-
bution function turns into Gaussian [3]:

WG ¼ expð−ðE=BGÞ2Þffiffiffiπp
BG

ð5Þ

with variance

BG ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32πcv
15ð2rÞ3

s
αEin; ð6Þ

where r is the radius of the particle. The threshold
concentration of transition to Gaussian distribution
was estimated in [5] as 0.1. It should be underlined that
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the mean random field on the test particle is zero owing
to the symmetry of the problem.
The energy of interaction of dipole induced on the test

particle with the random field is −pE, so one can arrive at
the partition function per particle using relation

Z ¼
Z

expð−pE=kBTÞWðEÞdE; ð7Þ

where WðEÞ is the distribution function (3) or (5), kB is
the Boltzmann constant, and T is the temperature. Free
energy of the ensemble is

F ¼ −kBT
c
v
lnZ:

The nonlinear cubic dielectric susceptibility of the
isotropic medium χð3Þ is defined by relation between
Ein and macroscopic polarization P:

P ¼ χð1ÞEin þ χð3ÞjEinj2Ein; ð8Þ

where χð1Þ is linear susceptibility of the system. For
monochromatic irradiation and nonabsorbing medium
P can be calculated using the thermodynamic relation [6]

P ¼ −
∂hFit
∂Ein

; ð9Þ

where hit denotes time averaging. One can obtain third-
order susceptibility χð3Þ by solving Eqs. (8) and (9).
For the case of a Lorentzian distribution function the

integration in Eq. (7) could be limited by �Emax:

Emax ¼ 2p=εmð2rÞ3; ð10Þ

which is the maximum value of dipolar interaction field
from the possible closest particle. The partition function
for Lorentzian distribution is

Z ¼ i
2π f½Ei1ðaþ ibÞ − Ei1ð−a − ibÞ�e−ib

þ ½Ei1ð−aþ ibÞ − Ei1ða − ibÞ�eibg;

a ¼ α2v2E2
in

4r3kBT
; b ¼ α2vE2

in

kBT
; ð11Þ

where Ei1 is the exponential integral. Expanding ∂F=∂Ein
into a series in terms of Ein and retaining the lowest-order
term, we obtain χð3Þ:

χð3Þ ¼ 8π2ε2mα4vc2
27kBT

�
16cπ2
9

þ
ffiffiffi
3

p
v

ð2 arctan 32π2cr3
9

ffiffi
3

p
v
− πÞr3

�
:

ð12Þ
Applying again c → 0 we have

χð3Þ ¼ −
8πε2mv2α4c2

9
ffiffiffi
3

p
r3kBT

: ð13Þ

The formula (12) was obtained under assumption of
polarization of the test particle parallel to selected direc-
tion. The particle can be also polarized in the opposite

direction. In this case we change sign of exponential ar-
gument in Eq. (7). Further manipulations lead to the
same results, so time averaged χð3Þ is given by Eq. (12).

For c > 0:1, dipolar contribution to nonlinear Kerr
dielectric susceptibility is readily obtainable:

χð3Þ ¼ −
4πε2mv2α4c2
15r3kBT

: ð14Þ

The relation between χð3Þ and nonlinear refractive
index n2 is

n2 ¼
4π
n0

χð3Þ;

where n0 is the linear refractive index.
It should be emphasized that dipolar induced n2 al-

ways has negative sign. This results from the randomiz-
ing nature of dipole–dipole interactions in the ensemble.
Figure 1 shows χð3Þ calculated using Eqs. (12) and (14) as
functions of volume concentration of nanoparticles.

The contribution of interparticle interactions can be
comparable with other contributions to nonlinear part
of refractive index. For instance, the third-order suscept-
ibility measured for SiO2-TiO2 films doped with PbS quan-
tum dots with 25 mol:% concentration at 1:064 μm
wavelength in picosecond regime was about −1 ×
10−10esu [7]. The calculations using Eqs. (2) and (14) yield
χð3Þ ¼ −1:4 × 10−10 esu for nanoparticles with values de-
rived from [7]: r ¼ 1:4 × 10−7 cm, εm ¼ 2:28, εp ¼ 19:23,
α ¼ 0:17, T ¼ 300 K, c ¼ 0:18. The third-order nonlinear
susceptibility observed for silica glasses containing ZnSe
nanocrystals at 3% concentrationwas−4:6 × 10−12 esu [8].
The formula (12) with parameters based on data from [8]
(r ¼ 2:7 nm, α ¼ 0:11, c ¼ 0:03) gives −6 × 10−12 esu.

Decrease in χð3Þ with gain of nanoparticle concentra-
tions was observed in [7–9]. It could be connected with
growing strength of dipole interactions in ensemble. The
dependence of χð3Þ on the concentration observed in [9]
and in [7] with picosecond pulses was explicitly non-
linear. It may be justified on the basis of interparticle
interactions whose contribution to χð3Þ is expected to
vary as c2.

Fig. 1. (Color online) Reduced dipolar contribution to third-
order susceptibility of ensemble versus volume concentration
of spherical nanoparticles calculated using Lorentzian and
Gaussian distribution functions [Eqs. (12) and (14)].
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It should be stressed that χð3Þ depends strongly on
polarizability α which changes for quantum dots owing
to confinement effect. For example, the polarizability
values of CdSe quantum dots measured at terahertz or
static electric fields lie in the range 0.4 [10] to 3.6 [11].
Also, not all the nanoparticles may be polarized simulta-
neously; in this instance nonpolarized nanoparticles
should be excluded from concentration c.
The dielectric susceptibility of the medium in the first

approximation varies inversely as temperature similarly
to paramagnets. It is to be noted that α also can depend
on temperature.
From this it can be concluded that interparticle dipolar

interactions contribute significantly to the third-order di-
electric susceptibility of nanocomposites containing
semiconductor quantum dots. This contribution always
leads to self-defocusing optical nonlinearity of the
system.
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