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Distribution of Electric Field Strength in Optical Planar Waveguides 
with Nanoparticles 

 
Andrey V. Panov* 

 
Abstract: A symmetrical optical planar waveguide containing a layer with nanoparticles (the active layer) is examined by 
virtue of numerical simulation. We calculate the dependence of the electric strength field amplitude on the volume 
concentration of the nanoparticles within the active layer. It is shown that even TE-modes are most suitable for 
observation of nonlinear optical effects.  
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In recent years much interest has been centered 
around a study of the nonlinear optical phenomena, which 
are observed in the media, containing nanoparticles[1, 2]. 
Such the medium with nanoparticles can be embedded, 
for example, into planar waveguides where the nonlinear 
optical interaction can occur[1]. It is of great interest to 
know the light intensity in the medium with nanoparticles 
since nonlinear optical effects depend on the strength the 
of electric field. 

Let us examine the depicted in Fig. 1 symmetrical 
three-layered planar waveguide, which is contained from 
two sides in the substrate (regions 0 and 4 in the figure). 
We will assume that basic waveguide layers are regions 1 
and 3 with thickness 1d , region 2 with thickness 2d  
( 2 1d d= ) consists of the medium with the nanoparticles, 
in which nonlinear optical interaction occurs. We will 
consider that the particle sizes are much lower than the 
wavelength of light. 

 

 
 

Fig. 1. A sketch of the planar waveguide. 

The distributions of vectors of electric an magnetic 
strength E , H  in the waveguide are found by the means 
of the solution of Maxwell's equations. Assuming that 
light propagation in the waveguide does occur in the 
direction of z -axis, we will seek the solutions in the form  

 
, exp[ ( )],i t zω β∝ −E H                           (1) 

 
 where β  is longitudinal propagation number, which 

depends on the number of mode, ω  is cyclic frequency, t  
is the time. 

It is common knowledge that the solutions of 
Maxwell's equations for the planar waveguides are 
decomposed into two types: H -waves (TE-modes, 

, , 0z x yH H E ≠ ) and E -waves (TH-modes, 
, , 0z x yE E H ≠ )[3]. 
At first let us study E -waves (TH-modes). Only one 

of three components of the vectors E  and H  is 
independent, for example yH . In this case Maxwell's 
equations are reduced to the equation  
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 where ( )n x  is the refractive index of medium, k  is 

the wave number in the vacuum. zE , xE  are expressed as 
yH  as follows:  
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where j  is the region number (see Fig. 1). In the case 

2 1>n n  (the effective layer is waveguiding) we can write 
the solutions of the equation (2) in the form:  

 
,0 0 0= exp( ),yH A xα−                                    (4) 
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,1 1 1, 1 1,= cos( ) sin( ),y x xH A k x B k x+                (5) 
 

,2 2 2, 2 2,= cos( ) sin( ),y x xH A k x B k x+               (6) 
 

,3 3 1, 3 1,= cos( ) sin( ),y x xH A k x B k x+               (7) 
 

,4 4 0= exp( ),yH A xα                                      (8) 
 

2 2 2 2 2 2
1, 1 2, 2= , = ,x xk n k k n kβ β− −  

2 2 2
0 0= .n kα β −  

 
Integration constants jA , jB  are sought with the 

boundary conditions, which can be written for zE  and 
yH  in the form:  
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The set of algebraic equations (9)–(16) makes it 

possible to express 1A ... 4A , jB  through the constant 0A , 
which is preset by the intensity of the light introduced into 
the waveguide, hereinafter for simplicity we will assume 

0 = 1A . Let us write the set of equations (9)–(16) with 
respect to jA , jB  in the matrix form and after making the 
determinant of the left side of the matrix equation equal to 
zero we will obtain transcendental equation for β : 
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which is solved numerically. 

 
Fig. 2. The magnitude of xE  of TH-modes and yE  of 
TE-modes versus x  coordinate for the homogeneous 

waveguide ( 2 1= = 1.52n n ). 
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Fig. 3. The magnitude of xE  of TH-modes and yE  of 
TE-modes versus x  coordinate for the waveguide with 

= 0.2p , = 1.6mn , = 2.5pn . 
 

Numerical simulations were carried out for the 
waveguides with the refractive indices 0 = 1.51n , 

1 = 1.52n  and with the thicknesses 2 = 2d μ m and 
2 = 0.01d μ m. The effective refractive index of active 

medium with the nanoparticles can be calculated with the 
aid of the formula, obtained by Bruggeman in the model 
of the effective medium[4]:  

 
( ) (1 )( )

= 0,
2 2

p e m e

p e m e

p pε ε ε ε
ε ε ε ε

− − −
+

+ +
                   (18) 

 
where 2=p pnε  is the dielectric constant of 

nanoparticles, 2=m mnε  is the dielectric constant of the 
medium, which contains nanoparticles, 2

2=e nε  is the 
effective dielectric constant of the central layer of the 
waveguide, p  is volume concentration of nanoparticles 
in the central layer. For modeling the waveguiding active 
layer we set = 2.5pn  which corresponds to TiO 2 . 

Figures 2, 3 show the results of the calculations of 
dependencies of the x  component of the electric field 
strength amplitude on x  for TH-modes ( xE  curves). Let 
us note, the strength of the transverse component of the 
electric field on the graphs is expressed in the 
dimensionless units, connected with the excitation of the 
specific mode in the waveguide (arbitrariness of the 
selection of constant 0A ). Fig. 2 depicts the distribution 
of xE  in the homogeneous waveguide ( 2 1= = 1.52n n ), 
figure 3 illustrates the distribution of xE  in the 
waveguides with the active layer. We can see from the 
figure, an increase in pn  leads to the larger concentration 
of the electric field strength of the zero TH-modes in the 
active layer. For the odd mode in the center of waveguide, 
as one would expect for the symmetrical waveguides, xE  
vanishes at = 0x . 

In the case, when the active layer of the waveguide 
has the less optical density ( 2 1<n n ) the part of the 

equations for finding the value of electric field will be 
written by other means. Formula (6) must be replaced by  

 

,2 2 2, 2 2,= exp( ) exp( ),y x xH A k x B k x+              (19) 
 

accordingly the equations for the boundary conditions 
(10), (11), (14), (15) by  
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In this case also we should change the expression for 

2,xk :  
2 2 2

2, 2= .xk n kβ −                             (24) 
 

Accordingly the characteristic equation for finding the 
longitudinal propagation number β  changes. The results 
of calculated distribution in the waveguide are depicted in 
Fig. 4. Let us note that in this case xE  of even modes is 
``extruded" from the central layer, since the 
electromagnetic wave is damped in it. In particular higher 
modes have an explicit minimum at = 0x . 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4. The magnitude of xE  of TH-modes versus x  

coordinate for the waveguide with 2 = 1.2n . 
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Fig. 5. The magnitude of yE  of TE-modes versus x  
coordinate for the waveguide with 2 = 1.2n . 

 
The solutions in the case of H -waves (TE-modes) 

are analogous given above, the results of calculations are 
illustrated in figures 2, 3, 5 ( yE  curves). The results 
qualitatively repeat the profiles of the transverse 
component of vector E  of the TH-modes. 

 

(a)
 

 

(b)
 

Fig. 6. Reduced transverse electric field strength 
components of TH (a) and TE (b) modes in = 0x  versus 

the nanoparticle concentration in the active layer p  
( = 1.6mn , = 2.5pn ). 

 
 
 
 

 

The dependencies of the reduced strengths of the 
electric field vector of even modes on the volume 
concentration of nanoparticles in the active layer are 
displayed in Fig. 6. Here xE  and yE  are divided by 
corresponding strength amplitudes of the certain mode for 
the homogeneous waveguide. We can see from the figure 
that an increase in the concentration of particles p  in the 
active layer leads to a change of the strength of electric 
field in the central layer of the waveguide, besides the 
case of basic TE-mode 0 yE , when yE  practically does 
not vary. The strength of TE-mode 2 yE  increases with p  
almost linearly, thus this mode is most promising from the 
point of view of the observation of nonlinear optical 
interactions. For TH-modes we observe the competition 
of two effects: change of the strength of electric field in 
the active layer with an increase in the concentration of 
particles and dependence of nonlinear interaction on p . 
It should be noted that 0 xE  is the nonmonotone function 
of p , while 2 xE  decreases almost linearly. 

From our calculation it can be concluded that the 
selection of the working mode is essential for the 
observation of the nonlinear optical effects in waveguides. 
TE-modes of the symmetrical waveguide are most 
suitable for the observation of the optical interactions. 
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